
Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds

Yujia Liu
ETH Zürich

Anton Obukhov
ETH Zürich

Jan Dirk Wegner
University of Zürich

Konrad Schindler
ETH Zürich

Figure 1. Point2CAD reconstructs complex CAD models from 3D point clouds. A point cloud is segmented into clusters corresponding to
CAD faces. Each face is fitted with a geometric primitive or a parametric surface using a novel neural representation. Due to the analytic
representation, the surfaces can be extended and intersected such that topology emerges, which is then used to clip the surface primitives.

Abstract

Computer-Aided Design (CAD) model reconstruction
from point clouds is an important problem at the intersection
of computer vision, graphics, and machine learning. Re-
cent advancements in this direction achieve rather reliable
semantic segmentation but still struggle to produce an ad-
equate topology of the CAD model. We propose a hybrid
analytic-neural reconstruction scheme that bridges the gap
between segmented point clouds and structured CAD models.
To power the surface fitting stage, we propose a novel im-
plicit neural representation of freeform surfaces, driving up
the performance of our overall CAD reconstruction scheme.
We evaluate our method on the ABC benchmark of CAD
models and set a new state-of-the-art for that dataset.

1. Introduction
The task of reverse engineering CAD models from 3D

point clouds has gained increasing attention in recent years
due to the rapid development of 3D scanning technologies.
Most approaches to reverse engineering CAD models follow
a typical sequence of steps: point cloud capture, parts seg-
mentation, and analytic representation inference. Research

that aims to automate the process has focused chiefly on
individual steps, whereas little work covers the complete
workflow of CAD model reconstruction.

The present work addresses this gap by proposing
Point2CAD, a method that recovers complete CAD mod-
els, including free-form surfaces, edges, and corners. Our
proposed pipeline for CAD model reconstruction from point
clouds is composed of several steps. First, a pre-trained
neural network is employed to segment the point cloud into
clusters corresponding to distinct surfaces. Second, basic
primitives and a novel implicit neural representation (INR)
of freeform surfaces, are fitted to the clusters. Third, adjacent
surfaces are intersected to recover edges, and adjacent edges
are further intersected to recover corners, thus obtaining
a full B-rep. Taken together, these steps form a compre-
hensive and versatile pipeline for reverse engineering point
clouds into CAD models, see Fig. 1. By combining modern,
learning-based segmentation backbones with classical geo-
metric primitive fitting and with recent neural field methods
for freeform surfaces, we get the best of both worlds and
obtain a reconstruction pipeline that sets a new state of the
art on the large-scale ABC benchmark [5].

2. Related Work
3D point cloud segmentation. Neural architectures to learn
feature embeddings of point clouds include: graph convolu-
tions [14], point-voxel learning [9], and transformers [16].
Primitive fitting Several learning-based approaches were
proposed to fit geometric primitives to point clouds.
ParSeNet [11] finds parametric surfaces in point clouds,
including basic geometric primitives as well as B-spline
surfaces, but does not connect them. HPNet [15] focuses on
partitioning the point cloud into segments using semantic as
well as spectral features and edge information in the form of
an adjacency matrix but does not fit actual primitives.
Generic CAD modeling. ComplexGen [1] reconstructs
CAD models by autoregressively detecting geometric prim-
itives. It consists of a CNN encoder, three transformer
decoders for geometric primitives and topology, and post-
processing with global optimization for the final refinement.
Manifold learning techniques aim at discovering a low-
dimensional manifold underlying a higher-dimensional data
set. Most methods focus on visualization or fidelity to partic-
ular input points, by explicitly using those points to construct
the mapping [7, 10, 13]. Autoencoders provide a natural way
to not only project data non-linearly to a lower-dimensional
latent space, but also to decode back from the latent space
to the original data space [6]. We extend this approach with
the recent findings about implicit neural representations to
design a fitting method for freeform surfaces.
Implicit neural representations (INR) are a generic frame-
work to encode an arbitrary function observed in the form
of sparse samples into a neural network. Research on neu-
ral rendering has led to several useful insights about neural
fields, e.g., the importance of positional encoding [8] and
new activation functions [12]. These findings form the basis
for our freeform surface fitting method.

3. Method
Contrary to the recent trend towards generic, end-to-end

deep learning pipelines, we found it advantageous to split
the reconstruction process into steps and only use neural
methods where necessary. Overall, our method consists of
the following stages, cf . Fig. 1:

1. Partition the point cloud into clusters corresponding to
the CAD model’s topological faces. For that step, we rely
on existing (pretrained) neural network methods.

2. Fit an analytical surface primitive to each cluster. Here
we use a hybrid approach: First, we test a set of prevalent
geometric surface primitives that admit efficient closed-
form fitting. For freeform surfaces, we propose a novel
fitting scheme based on implicit neural representations.

3. Find the effective area of each parametric surface and clip
it, leaving enough margin to intersect adjacent surfaces.

Figure 2. Inspiration items of our INR surface fitting. UMAP [7]
(1st column, middle) learns the underlying 2D manifold of 3D
points along with the inverse mapping but cannot capture its smooth
analytic representation. Early experiments with ReLU activations
confirmed its low-frequency bias (1st column, bottom) and piece-
wise linearity. SiLU [2] (2nd column) suffers from low-frequency
bias, too. We found that resolving it by adding positional en-
coding is challenging under our training protocol (3rd column).
SIREN [12] (4th column) fits the data well but does not extrapolate.

4. Perform pairwise surface intersections to obtain a set of
topologically plausible object edges. Using these edges,
remove parts not supported by input points.

5. Perform pairwise edge intersection to identify a set of
topological corners. Clip edges based on proximity to the
remaining surface regions and inferred corners.

As a result of applying Point2CAD, we obtain a CAD model
in B-rep format, which includes analytical surfaces to repre-
sent the model’s faces, compatible edges and corners, and
adjacency matrices that encode topology.

A cornerstone of the proposed pipeline is a novel method
for fitting freeform parametric 2D-manifold surfaces in 3D
to an unordered set of points. The 2D latent space allows for
interpretable surface extrapolation, required in steps 3-4.

While using neural methods, INR is a pure test-time op-
timization. We effectively side-step learning priors from
training data except for the initial low-level segmentation.
We argue that simple analytical procedures like surface fit-
ting do not necessarily benefit from learned priors and that
an over-reliance may have hampered recent work on reverse
engineering CAD models on data-driven learning. We em-
pirically support this claim in our experiments, where we
outperform purely learning-based methods like [1].

3.1. Parametrization of standard primitives

The geometric primitives that our current implementation
handles are planes, spheres, cylinders, and cones. The exact
parameterizations are taken the same as in [11]. We observed
that utilizing the predicted surface type harms the reconstruc-
tion since the prediction is not always correct. Therefore, we
instead rely on clustering and an exhaustive comparison: we
fit each primitive type (including INR) to point clusters and
select the model with the lowest reconstruction error.

Figure 3. Block-scheme of our proposed INR for freeform surfaces
fitting. We autoencode groups of 3D surface points into a latent 2D
uv space. We use a mixture of activations achieve high fidelity of
fitting and smooth extrapolation. Both open and closed surfaces are
supported via preconfigured routing. See Sec. 3.2 for more details.

3.2. Freeform surface parametrization with INR

For the overall CAD reconstruction pipeline, this step
should meet several requirements: (1) resilience to noise in
the input point cloud; (2) support for inverse mapping to
enable traversal of the latent space; (3) flexibility in inter-
polation mode to ensure high data fidelity and avoid over-
smoothing; (4) strong regularization in extrapolation mode
for surface intersection; (5) very low computational cost.

Existing manifold learning techniques that support the
inverse transform, such as UMAP [7], could not be read-
ily used for this task. We thus developed a neural autoen-
coder [6] with a single hidden layer, sufficient for simple
non-linear transforms [3]. Our key finding is that different
activation functions comply with subsets of requirements,
and violate others, e.g., SiLU [2] leads to smooth extrapo-
lation but does not interpolate well, whereas SIREN [12]
exhibits the opposite behavior. We employ a mixture of these
activations, which leads to the solution satisfying the above
requirements; see Fig. 2 for ablation visualization.

Fig. 3 depicts a block diagram of the proposed autoen-
coder. Each surface is treated with a separate INR indepen-
dently by feeding batches of its 3D points (X ,Y ,Z) through
a 1-layer MLP encoder and a corresponding decoder, with a
2D bottleneck corresponding to manifold coordinates (u,v).

For each surface, the weights of a template INR are ini-
tialized randomly and optimized with standard mini-batch
(or full-batch) descent. We run Adam [4] for 1000 steps,
with 50 steps warm-up of the learning rate, followed by a
linear decay that reaches zero at the last step. The complete
optimization takes only a few seconds on a single GPU, and
multiple surfaces can be fitted in parallel.

For extrapolation, we encode all cluster points into the
latent uv space and store the bounding box parameters along
with the autoencoder. To sample the surface with the margin,
we extend the said bounding box by 10% in both dimensions
and compute 3D points using the decoder.

Figure 4. Results gallery. Different colors denote different sur-
faces. Edges and corners are depicted with black plastic. Left to
right: input point cloud, ground truth mesh, and reconstruction
with ComplexGen [1]. Then the proposed Point2CAD method is
applied to different segmentation: with HPNet [15], ParSeNet [11],
and Ground Truth. Our method reconstructs the ground truth ge-
ometry and topology from the ground truth segmentation nearly
perfectly. When applied on top of pretrained segmentation modules,
it outperforms the competition by a high margin.

3.3. Topology reconstruction

After instantiating all individual surfaces, it is instrumen-
tal to establish their boundaries, which amounts to finding
the intersection curves between adjacent surfaces. This re-
quirement again calls for deterministic geometric methods,
as independent detection can hardly guarantee a set of edges
that is complete and consistent with the surfaces. While
working out the surface intersections analytically is possible,
multiple freeform surfaces lead to complicated calculations.

Hence, we convert all surfaces to triangle meshes for this
step, such that they can be accurately intersected with mature,
numerically stable tools. For each surface, the geometric
primitive is trimmed to a margin of width ϵ around the sup-
porting points and then fed to a standard meshing algorithm.
We compute pairwise mesh intersections to obtain edges as
polylines and re-mesh the surfaces along those edges. Simi-
larly, we intersect adjacent edge poly-lines to obtain corner
points and use those corners to trim the edges.

4. Experiments

The flexible constraints on the input to our method permit
employing it in various setups. Evaluation of the ground
truth point cloud clustering or segmentation can be seen as a
way to quantify the contribution of point cloud sampling spar-
sity and sample noise on the reconstruction quality (aliased
“Point2CAD GT”). The main case of interest is the usage on
top of any pretrained point cloud clustering or segmentation
methods, such as ParSeNet [11] or HPNet [15].

To evaluate Point2CAD, we conduct experiments on the
ABC dataset [5], a large-scale collection of CAD models
(∼1.000.000 models). We use a subset of the same split as
ParseNet, where each model contains at least one freeform

Table 1. Fitting on freeform surfaces. In ComplexGen, a
transformer-style decoder is utilized to convert the latent code
of surfaces to a grid of 20x20 points on surfaces. ParseNet employs
a neural network to output a 20x20 control-point grid. For us, we
utilize the introduced INR.

Open surfaces Closed surfaces

Res-err ↓ P-cover ↑ Res-err ↓ P-cover ↑
ComplexGen 0.021 0.938 0.023 0.900
ParseNet 0.006 0.930 0.008 0.902
Point2CAD (INR) 0.002 0.999 0.003 0.998

Table 2. Geometric evaluation on reconstructed CADs. Segmen-
tation denotes the method used for point cloud clustering. “GT”
stands for oracle ground truth segmentation, which is also an upper
bound of the performance of our method.

Segmentation Res-err ↓ P-cover ↑ Chamfer ↓
ComplexGen N/A 0.020 0.950 0.042
Point2CAD ParseNet 0.018 0.933 0.017
Point2CAD HPNet 0.020 0.937 0.018

Point2CAD GT 0.011 0.947 0.016

surface, to facilitate a fair comparison with existing methods
and to better demonstrate the feasibility of our approach.

Following the evaluation protocols outlined in [11,15], we
employ several geometric metrics, including: (1) Residual
error as a measure of discrepancy between reconstructed
surfaces and their corresponding ground truth counterparts
determined via Hungarian matching; (2) Chamfer distance,
a bidirectional residual measure disregarding separation into
surfaces; (3) P-coverage, the proportion of input points in
the cloud having a generated surface in close proximity; (4)
[Surface, Edge, Corner] × [precision, recall, F-score]
proposed in [1] to disentangle topological fidelity factors.

4.1. Evaluation on Freeform Surfaces

Both ComplexGen [1] and ParseNet [11] have success-
fully demonstrated the prediction of the freeform surfaces.
We analyze a subset of freeform surfaces of the ABC dataset
and average the geometry fitting metrics; see Tab. 1 for quan-
titative evaluation. INR fitting method generates freeform
surfaces that represent the underlying points more faith-
fully than prior parameterizations. Qualitative results of
Point2CAD freeform surface fitting confirm the qualitative
study, also seen in the side-by-side comparison in Fig. 4.

4.2. Reconstructed CAD Evaluation

As seen in Tab. 2, Point2CAD outperforms ComplexGen
in all topological metrics except P-coverage. We attribute the
latter effect to the asymmetric nature of the metric favoring
spurious predictions. Furthermore, Point2CAD achieves
excellent results when fed with ground truth segmentations,

Table 3. Evaluation on CAD Reconstruction of Surfaces, Edges
and Corners from the aspects of accuracy and completeness. The
surface evaluation assesses the reconstruction performance in geo-
metric terms, while these metrics on edges and corners reflect the
reconstruction performance regarding topological properties.

Surfaces θsurface = 0.03

Method Segmentation precision ↑ recall ↑ F-score ↑
ComplexGen N/A 0.370 0.388 0.379
Point2CAD ParseNet 0.578 0.520 0.547
Point2CAD HPNet 0.644 0.540 0.587

Point2CAD GT 0.838 0.731 0.781

Edges θedge = 0.02

Method Segmentation precision ↑ recall ↑ F-score ↑
ComplexGen N/A 0.290 0.279 0.284
Point2CAD ParseNet 0.332 0.381 0.355
Point2CAD HPNet 0.351 0.368 0.360

Point2CAD GT 0.493 0.517 0.505

Corners θcorner = 0.01

Method Segmentation precision ↑ recall ↑ F-score ↑
ComplexGen N/A 0.217 0.203 0.210
Point2CAD ParseNet 0.349 0.401 0.373
Point2CAD HPNet 0.353 0.380 0.366

Point2CAD GT 0.451 0.524 0.485

indicating that it will likely further improve as better point
cloud segmentation engines become available.

Precision, recall, and F-score of topological surfaces,
edges, and corners are shown in Tab. 3. The results sug-
gest that Point2CAD with HPNet segmentation backbone
achieves the highest performance, while reconstruction
based on the ground truth point cloud segmentation provides
the best results, as expected. We find that our ”segmentation-
fit-intersect” approach generates more reliable CAD models
than learned generative methods like ComplexGen.

5. Conclusion

We present Point2CAD, a comprehensive and versatile
approach for reverse engineering CAD models from point
clouds, which can handle various types of surfaces and
yield topologically consistent reconstructions. The proposed
method segments point clouds with a pre-trained segmenta-
tion backbone but then employs learning-free optimization
methods to fit geometric primitives, including freeform sur-
faces that are optimized with a novel implicit neural repre-
sentation. The recovered surfaces are analytically intersected
to obtain the edges and corners of the model. Empirically,
our proposed method outperforms prior art on the popular
ABC dataset of CAD models.

References
[1] Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and

Baining Guo. ComplexGen: CAD reconstruction by B-rep
chain complex generation. ACM TOG, 41(4):1–18, 2022. 2,
3, 4

[2] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 2, 3

[3] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Mul-
tilayer feedforward networks are universal approximators.
Neural networks, 2(5):359–366, 1989. 3

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 3

[5] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. ABC: A big CAD model
dataset for geometric deep learning. In CVPR, 2019. 1, 3

[6] Mark A Kramer. Nonlinear principal component analy-
sis using autoassociative neural networks. AIChE journal,
37(2):233–243, 1991. 2, 3

[7] Leland McInnes, John Healy, and James Melville. Umap:
Uniform manifold approximation and projection for dimen-
sion reduction, 2018. 2, 3

[8] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Commun. ACM, 65(1):99–106, dec 2021. 2

[9] Dario Rethage, Johanna Wald, Jurgen Sturm, Nassir Navab,
and Federico Tombari. Fully-convolutional point networks
for large-scale point clouds. In ECCV, 2018. 2

[10] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimen-
sionality reduction by locally linear embedding. Science,
290(5500):2323–2326, 2000. 2

[11] Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos
Kalogerakis, Siddhartha Chaudhuri, and Radomı́r Měch.
ParSeNet: A parametric surface fitting network for 3d point
clouds. In ECCV, 2020. 2, 3, 4

[12] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. In H. Larochelle, M.
Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33,
pages 7462–7473. Curran Associates, Inc., 2020. 2, 3

[13] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford.
A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, 2000. 2

[14] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM TOG, 38(5):1–
12, 2019. 2

[15] Siming Yan, Zhenpei Yang, Chongyang Ma, Haibin Huang,
Etienne Vouga, and Qixing Huang. HPNet: Deep primitive
segmentation using hybrid representations. In ICCV, 2021. 2,
3, 4

[16] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In ICCV, 2021. 2

