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Abstract

We introduce MeronymNet, a novel hierarchical ap-
proach for controllable, part-based generation of multi-
category objects using a single unified model. We adopt a
guided coarse-to-fine strategy involving semantically con-
ditioned generation of bounding box layouts, pixel-level
part layouts and ultimately, the object depictions. We use
Graph Convolutional Networks, Deep Recurrent Networks
along with custom-designed Conditional Variational Au-
toencoders to enable flexible, diverse and category-aware
generation of 2-D objects in a controlled manner. The per-
formance scores and generations reflect MeronymNet’s su-
perior performance compared to scene generation base-
lines and ablative variants.

1. Introduction

Alongside recent successes for controllable scene gener-
ation [12, 18, 25, 19, 17, 1], generative models for individ-
ual objects have also found a degree of success [3, 10, 7,

, 24, 4]. The bulk of object generation approaches spe-
cialize for a single category of objects with weakly aligned
part configurations (e.g. faces [3, 10, 7]) and for objects
with associated text description (e.g. birds [22, 24]). Al-
though models such as as BigGAN [4] go beyond a single
category, conditioning is possible only at a category level.
Models which afford a more finer degree of control (e.g.
part-level) for multiple object categories have not been ex-
plored. In addition, existing approaches induce contextual
bias by necessarily generating background along with the
object. As a result, the generated object cannot be utilized
as a sprite (mask) for downstream tasks [5] (e.g. composit-
ing the object within a larger scene). Re purposing con-
trollable scene generative models, though seemingly rea-
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Figure 1: Given an object category c and an associated list of
plausible object parts I, a part-labelled bounding box layout B;,
is stochastically generated (Sec. 2.1). The box layout and cate-
gory is used to guide the generation of a pixel-level label map .S;,
(Sec. 2.2). This layout map is translated into the final object de-
piction Oy, (Sec. 2.3). Black-red circles indicate conditioning by
object attributes during generation.

sonable, is not a viable alternative due to unique challenges
in part-controlled object generation (as we shall show).

To address these shortcomings, we introduce
MeronymNet', a novel unified part and category-aware
generative model for object sprites (Fig. 1). Conditioned
on a specified object category and an associated part list,
a first-level generative model stochastically generates
a part bounding box layout (Sec. 2.1). The category
and generated part bounding boxes are used to guide
a second-level model which generates semantic part
maps (Sec. 2.2). Finally, the semantic part label maps
are conditionally transformed into object depictions via
the final level model (Sec. 2.3). Our unified approach
enables diverse, part-controllable object generations across
categories using a single model, without the necessity of
multiple category-wise models (Sec. 4). Please visit our
project page http://meronymnet.github.io/ for
source code, generated samples and full version of this
paper [2].

'Meronym: Linguistic term for expressing part-to-whole relationships.
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Figure 2: Architecture for BoxGCN-VAE which generates part-
labelled bounding box object layouts (Sec. 2.1). The numbers
within the rounded light pink rectangles indicate dimensionality
of fully connected layers. Generative path is shown in dark pink.

2. MeronymNet

See Fig. 1. Suppose we wish to generate an object from
category ¢ (1 < ¢ < M), with an associated maximal part
list L.. The category (c) and a list of parts [, C L. is
used to condition BoxGCN-VAE, the first-level generative
model which stochastically generates part-labelled bound-
ing boxes. The generated part-labeled box layout B;, and
c are used to condition LabelMap—VAE which generates a
category-specific per-pixel part-label map S;, . Finally, the
label map is conditionally transformed into an RGB object
depiction O, via the final-level Label2obj model.

2.1. BoxGCN-VAE

Representing the part bounding box layout: We design
BoxGCN-VAE (Fig. 2) as a Conditional VAE which learns
to stochastically generate part-labelled bounding boxes. We
model the object layout as an undirected graph. Let p be the
maximum possible number of parts across all object cate-
gories, i.e. p = max.length(L.),1 < ¢ < M. Xis
a p x b feature matrix where each row r corresponds to a
part. A binary value p, € {0, 1} is used to record the pres-
ence or absence of the part in the first column. The next
4 columns represent bounding box coordinates. For cate-
gories with part count less than p and for absent parts, the
rows are filled with 0s. The p x p binary matrix A encodes
the connectivity relationships between the object parts in
terms of part bounding box overlap. Thus, we obtain the
object part bounding box representation G = (X, A).

Encoding the graph representation: The feature repre-
sentation of graph G obtained from GCN is then mapped
to the parameters of a diagonal Gaussian distribution
(uB(G),0pp(G)), i.e. the approximate posterior. This
mapping is guided via category-level conditioning (see
Fig. 2). In addition, the mapping is also conditioned using
skip connection features. These skip features are obtained
via 1 x 1 convolution along the spatial dimension of bound-
ing box sub-matrix of input G (see top part of Fig. 2). In
addition to part-focused guidance for layout encoding, the
skip-connection also helps avoid imploding gradients.
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Figure 3: The architecture for LabelMap—VAE which generates
per-pixel map for each part conditioned on object class and the
part-labeled bounding box layout (Sec. 2.2). After generation, the
bounding boxes are used to compose the object in terms of appro-
priately warped part masks. The pink arrows indicate the data flow
for the generative model.

Reconstruction: The sampled latent variable z, condi-
tioned using category and part presence variables (c,l.),
is mapped by the decoder to the components of G =
(X,A). Denoting X = [X;|Xp)], the binary part-
presence vector X; is modelled as a factored multivari-
ate Bernoulli distribution. To encourage accurate local-
ization of part bounding boxes X;, we use two per-
box instance-level losses: mean squared error LMSF =
ijl(Xlﬁb [j] — X{,[4])? and Intersection-over-Union be-
tween the predicted (X »p) and ground-truth (X3) bounding
boxes LIV = —In(IoU(X},, X§,)) [23]. To impose ad-
ditional structural constraints, we also use a pairwise MSE
loss defined over distance between centers of bounding box
pairs. Denoting the ground-truth Euclidean distance be-
tween centers of m-th and n-th bounding boxes as d,, .,
the pairwise loss is defined as LY 55 ~¢ = (d,, 1, — di,n)?
where ch,n refers to predicted between-center distance.

For the adjacency matrix (A), we use binary cross-entropy

LBCE a5 the per-element loss.

It is important to note that unlike scene graphs [21, 9],
spatial relationships between nodes (parts) in our object
graphs are not explicitly specified. This makes our part
graph generation problem setting considerably harder com-
pared to scene graph generation. Also note that the decoder
architecture is considerably simpler compared to encoder.
As our experimental results shall demonstrate (Sec. 3), the
conditioning induced by category and part-presence, com-
bined with the connectivity encoded in the latent represen-
tation z, turn out to be adequate for generating the object
bounding box layouts despite the absence of graph unpool-
ing layers in the decoder.
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Figure 4: Architecture for Label2obj (Sec. 2.3) which translates
part label map S;, to corresponding 2-D object depiction O, con-
ditioned on category c¢’s embedding.

2.2. LabelMap-VAE

To generate dense per-part label maps, we design
LabelMap-VAE as a Conditional VAE which learns to
stochastically generate per-part spatial masks (Fig. 3). To
guide mask generation in a category-aware and layout-
aware manner, we use feature embeddings of object
category ¢ and bounding box layout B;  generated by
BoxGCN-VAE (Sec. 2.1). During encoding, the binary
mask for each part is resized to fixed dimensions. The
per-part CNN-encoded feature representations of individual
part masks are aggregated using a bi-directional Gated Re-
current Unit (GRU) (color-coded blue in Fig. 3). The per-
part hidden-state representations from the unrolled GRU are
stacked to form a p x h, representation H. This representa-
tion is modulated using a transformed representation of part
bounding boxes H; to induce bounding-box based condi-
tioning. The result is pooled across rows and further gated
using category information. In turn, the obtained feature
representation is ultimately mapped to the parameter repre-
sentations of a diagonal Gaussian distribution (uar, o).
Generating the part label map: The decoder transforms
the sampled latent variable z to a conditional data distri-
bution pg, (M |z, app, i) over the sequence of label maps
M = {mq,ma,...,mp} with 0, representing parameters
of the decoder network. a, and ayy, respectively represent
the conditioning induced by feature representations of ob-
ject category c and the stochastically generated bounding
box representation B;, . To obtain a one-hot representation
of the object label map, each part mask is positioned within
a H x W x p tensor where H x W represents the 2-D
spatial dimensions of the object canvas. The part’s index
k,1 < k < p, is used to determine one-hot label encoding
while the spatial geometry is obtained by scaling the mask
according to the part’s bounding box.

2.3. Label2o0bj

For translating part label maps generated by LabelMap-—
VAE (Sec. 2.2) to the final object depiction in a category-
aware manner, we design Label2obj as a modified, con-
ditioned variant of the approach by Park et. al. [17] (see

Fig. 4). The one-hot representation of object category is
transformed via an embedding layer. The embedding out-
put is reshaped, scaled and concatenated depth-wise with
appropriately warped label maps. The resultant features
comprise one of the inputs to the SPADE blocks within
the pipeline. Our modification incorporates a category-
aware discriminator [16] which complements our category-
conditioned generator.

3. Experimental Setup

Dataset: For our experiments, we use the PASCAL-Part
dataset [6], containing 10,103 images across 20 object cat-
egories annotated with part labels at pixel level. We se-
lect the following 10 object categories: cow, bird, person,
horse, sheep, cat, dog, airplane, bicycle, motorbike. The
collection is characterized by a large diversity in appear-
ance, viewpoints and associated part counts. The objects
are normalized with respect to the minimum and maximum
width across all images such that all objects are centered in a
[0,1] x [0, 1] canvas. We use 75% of the images for training,
15% for validation and the remaining 10% for evaluation.
Baseline Generative Models: Since no baseline models
exist currently for direct comparison, we designed and im-
plemented the baselines ourselves — see Fig. 6 for a visual
illustration of baselines and component configurations. We
modified existing scene layout generation approach [14] to
generate part layouts. In some cases, we modified existing
scene generation approaches having layouts as the starting
point [1, 19, 15] to generate objects. We also included mod-
ified variants of two existing part-based object generative
models (3-D objects [20], faces [7]). To evaluate individual
components from MeronymNet, we also designed hybrid
baselines with MeronymNet components (BoxGCN-VAE,
LabelMapVAE, Label20bj) included. We incorporated ob-
ject category, part-list based conditioning in each baseline
to ensure fair and consistent comparison.

Evaluation Protocol: = For each model (including
MeronymNet), we generate 100 objects for each cate-
gory using the per-category part lists in the test set. We
use Frechet Inception Distance [ 1] (FID) as a quantitative
measure of generation quality. The smaller the FID, better
the quality. For each model, we report FID for each
category’s generations separately and overall average FID.

4. Results

Quantitative results: As Table 1 shows, Meronymnet out-
performs all other baselines. The quality of part box lay-
outs from BoxGCN—-VAE is better than those produced us-
ing LSTM-based LayoutVAE [14] (compare rows 1, 7, rows
3,5 and 4, 6, also see Fig. 6). Note that the modified ver-
sion of PQNet [20] (row 10) also relies on a sequential
(GRU) model. The benefit of modelling object layout dis-
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Figure 5: Sample object generations from MeronymNet (second
row), c-SBGAN (third row) and objects from test set (top row).
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Figure 6: An illustration of baselines (rows) used for compara-
tive evaluation against MeronymNet (top row). The blue concen-
tric circles in columns denote inputs and outputs of components.
Components reused from MeronymNet are shown in orange text
and those based on our modifications to existing scene-based mod-
els are in green text.

tributions via the more natural graph-based representations
(Sec. 2.1) is evident. The results also highlight the impor-
tance of our three-stage generative pipeline. In particular,
MeronymNet distinctly outperforms approaches which gen-
erate objects directly from bounding box layouts [25, 19]
(compare rows 1,3,4). Also, the relatively higher qual-
ity of MeronymNet’s part label maps ensures better perfor-
mance compared to other label map translation-based ap-
proaches [1, 7, 13] (compare rows 1,2,8,9). In particu-
lar, note that our modified variants of some models [1, 7]
(rows 8,9) employ a SPADE-based approach [17] for the
final label-to-image stage.

The quality of sample generations from MeronymNet
(second row in Fig. 5) is comparable to unseen PASCAL-
Parts test images with same part list (top row). The same
figure also shows sample generations from c-SBGAN, the
next best performing baseline (last row). The visual qual-
ity of MeronymNet’s generations is comparatively better,
especially for categories containing many parts (e.g. per-
son, cow, horse). Across the dataset, objects tend to have
a large range in their part-level morphology (area, aspect
ratio, count) which poses a challenge to image-level label
map generation approaches, including c-SBGAN. In con-
trast, our design choices - generating all part label masks at
same resolution (Fig. 3), decoupling bounding box and label
map geometry — all help address the challenges better [&].
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Table 1: Category-wise and overall FID for different baselines
and MeronymNet. References to scene-generation components
are provided alongside each baseline’s name (column 2). Refer
to Fig 6 for a visual representation of baseline components.

It is somewhat tempting to assume that parts are to ob-
jects what objects are to scenes, compositionally speaking.
However, the analogy does not hold well in the genera-
tive setting. This is evident from our results with various
scene generation models as baseline components (Table 1).
The structural and photometric constraints for objects are
stricter compared to scenes. In MeronymNet, these con-
straints are addressed by incorporating compositional struc-
ture and semantic guidance in a considered, coarse-to-fine
manner which enables better generations and performance
relative to baselines.

Qualitative results: MeronymNet’s generations condi-
toned on object category and associated part lists from test
set can be viewed in full paper [2]. The results demon-
strate the MeronymNet’s ability in generating diverse object
maps for multiple object categories. The results also convey
our model’s ability to accommodate a large range of parts
within and across object categories.

5. Conclusion

Our novel generative model MeronymNet generates di-
verse looking RGB object sprites in a part-aware manner
across multiple categories using a single unified architec-
ture. The strict and implicit constraints between object
parts, variety in layouts and extreme part articulations, gen-
erally make multi-category object generation a challeng-
ing problem. Through our design choices involving GCNs,
CVAEs, RNNs and guidance using object attribute condi-
tioning, we show that these issues can be successfully tack-
led using a single unified model. Our evaluation establishes
the quantitative and qualitative superiority of MeronymNet,
overall and at individual component level. The advantages
of our hierarchical setup include efficient processing and
scaling with inclusion of additional object categories in fu-
ture. Going forward, we intend to explore modifications
towards improved quality, diversity and degree of controlla-
bility. We also intend to explore the feasibility of our unified
model for multi-category 3-D object generation.
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