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Abstract
We propose a novel framework for multi-person 3D mo-

tion trajectory prediction. Our key observation is that
a human’s action and behaviors may highly depend on
the other persons around. Thus, instead of predicting
each human pose trajectory in isolation, we introduce a
Multi-Range Transformer model which contains of a local-
range encoder for individual motion and a global-range
encoder for social interactions. The Transformer decoder
then performs prediction for each person by taking a cor-
responding pose as a query which attends to both local
and global-range encoder features. Our model not only
outperforms state-of-the-art methods on long-term 3D mo-
tion prediction, but also generates diverse social interac-
tions. More interestingly, our model can even predict 15-
person motion simultaneously by automatically dividing
the persons into different interaction groups. Videos are
available at: https://anonymousaut.github.io/
Anonymous-Result/

1. Introduction

Given a few time steps of human motion, we are able to
forecast how the person will continue to move and imagine
the complex dynamics of their motion in the future. The abil-
ity to perform such predictions allows us to react and plan
our own behaviors. Similarly, a predictive model for human
motion is an essential component for many real world com-
puter vision applications such as surveillance systems, and
collision avoidance for robotics and autonomous vehicles.
The research on 3D human motion prediction has caught a
lot of attention in recent years [35, 34], where deep models
are designed to take a few steps of 3D motion as inputs and
predict a long-term future 3D motion as the outputs.

While encouraging results have been shown in previous
work, most of the research focus on single human 3D mo-
tion prediction. Our key observation is that, how a human
acts and behaves may highly depend on the people around.
Especially during interactions with multiple agents, an agent
will need to predict the other agents’ intentions, and then
response accordingly [42]. Thus instead of predicting each

human motion in isolation, we propose to build a model to
predict multi-person 3D motion and interactions. Such a
model will need have the following properties: (i) under-
stand each agent’s own motion in previous time steps to
obtain smooth and natural future motion; (ii) within a crowd
of agents, understand which agents are interacting with each
other and learn to predict based on the social interactions;
(iii) the time scale for prediction needs to be long-term.

In this paper, we introduce a Multi-Range Transformer
for multi-person 3D motion trajectory prediction. The Trans-
former [48] has shown to be very effective in modeling
long-term relations in language modeling [12] and recently
in visual recognition [13]. Inspired by these encouraging
results, we propose to explore Transformer models for pre-
dicting long-term human motion (3 seconds into the fu-
ture). Our Multi-Range Transformer contains a local-range
Transformer encoder for each individual person trajectory,
a global-range Transformer encoder for modeling social in-
teractions, and a Transformer decoder for predicting each
person’s future motion trajectory in 3D.

Specifically, given the human pose joints (with 3D lo-
cations in the world coordinate) in 1-second time steps as
inputs, the local-range Transformer encoder processes each
person’s trajectory separately and focuses on the local mo-
tion for smooth and natural prediction. The global-range
Transformer encoder performs self-attention on 3D pose
joints across different persons and different time steps, and
it automatically learns which persons that one person should
be attending to model their social interactions. Our Trans-
former decoder will then take a single human 3D pose in
one time step as the query input and encoder features as the
key and value inputs to compute attention for prediction. We
perform prediction for different persons by using different
query pose inputs. By using only one time step person pose
as the query for the decoder instead of a sequence of motion
steps, we create a bottleneck to force the Transformer to ex-
ploit the relations between different time steps and persons
in the encoders, instead of just repeating the existing motion
alone [34].

We perform our experiments on multiple datasets includ-
ing CMU-Mocap [1], MuPoTS-3D [38], 3DPW [49], Panop-
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tic [20] for multi-person motion prediction in 3D (with
2 ∼ 15 persons). Our method achieves a significant im-
provement over state-of-the-art approaches for long-term
predictions and the gain enlarges as we increase the future
prediction time steps from 1 second to 3 seconds. Qualita-
tively, we visualize that our method can predict interesting
behaviors and interactions between different persons while
previous approaches will repeat the same poses as it goes to
further steps in the future.

2. Related Work

3D Motion Prediction. Predicting future human pose
in 3D has been widely studied with Recurrent Neural Net-
works (RNNs) [11, 15, 26, 32, 36, 40, 16, 18, 22, 55, 17].
For example, Fragkiadaki et al. [15] propose a Encoder-
Recurrent-Decoder (ERD) model which incorporates nonlin-
ear encoder and decoder networks before and after recurrent
layers. Besides using RNNs, temporal convolution networks
have also show promising results on modeling long-term
motion [30, 24, 9, 9, 35, 34, 5]. Most of these studies fix the
pose center and ignore the global body trajectory. Instead
of solving two problems separately, recent works start look-
ing into jointly predict human pose and the trajectory in the
world coordinate [53, 56, 54, 50, 10].

Social interaction with multiple persons. Multi-person
trajectory prediction has been a long standing problem in
decades [21, 37, 51, 41, 57, 7, 6, 19, 14, 39, 29, 33, 43,
8, 28, 46, 52, 47]. For example, Alahi et al. [7] present
a LSTM [23] model which jointly reasons across multiple
individuals in a scene. However, most of these approaches
focus on the global movement of the humans. To model more
fine-grained human-human interactions, recent research have
proposed to predict multi-person poses and trajectories at
the same time [45, 44, 3, 2]. Inspired by these works, we
propose a novel Multi-Range Transformer which scales up
the long-term prediction with even more than 10 persons.

3. Method
Given a scene with N persons and their corresponding

history motion, our goal is to predict their future 3D mo-
tion. Specifically, given Xn

1:k = [xn1 , ..., x
n
k ] representing

the history motion of person n where n = 1, ..., N , and k is
the time step. We aim to predict the future motion Xn

k+1:T

where T represents the end of the sequence. We use a vector
xnk ∈ R3J containing the Cartesian coordinates of the J
skeleton joints to represent the pose of the person n at time
step k. In contrast to most previous motion prediction works
which center the pose (joint positions) at the origin, we in-
stead use the absolute joint positions in the world coordinate.
In our method, xnk contains both the trajectory and the pose
information. For simplicity, we omit subscript n when n
only represents an arbitrary person, e.g., taking xn1:k as x1:k.

3.1. Network Architecture

The proposed architecture is composed of a motion pre-
dictor P and a motion discriminator D. In the predictor P ,
two Transformer-based encoders encode the individual (lo-
cal) and global motion separately and one Transformer-based
decoder decodes a smooth and natural motion sequence. The
motion discriminator D is a Transformer-based classifier
to determine whether the generated motion is natural. The
network architecture is shown in Fig. 1.

3.1.1 Local-range Transformer Encoder
We first use our Local-range Transformer encoder to process
this person’s history motion. We use offset ∆xi = xi+1−xi
between two time steps to represent the motion. We ap-
ply Discrete Cosine Transform (DCT) and a linear layer to
∆x1:k and then add the sinusoidal positional embedding [48]
to get the local motion embedding l1:k = [l1, ..., lk]. We con-
catenate them as a set of tokens Eloc = [l1, ..., lk]T and feed
them to the Transformer encoder. We have L alternating lay-
ers in the local-range Transformer encoder and we introduce
the technique we use in each layer. Firstly, a Multi-Head
Attention is used for extracting the motion information,

MultiHead(Q,K, V ) = [head1; ...; headh]WO

where headi = softmax(
Qi(Ki)T√

dK
)V i

(1)

WO is a projection parameter matrix, dK is the dimension of
the key and h is the number of the heads we use. We use self-
attention and get the query Qloc, key Kloc, and value Vloc
from Eloc for each headi as Qi

loc = ElocW
(Q,i)
loc ,Ki

loc =

ElocW
(K,i)
loc , V i

loc = ElocW
(V,i)
loc where W

(Q,i)
loc , W (K,i)

loc ,
W

(V,i)
loc are projection parameter matrices. loc represents

the local-range. We then employ a residual connection and
the layer normalization techniques to our architecture. We
further apply a feed forward layer, again followed by a resid-
ual connection and a layer normalization following [48]. The
whole process forms one layer of local-range Transformer
encoder. We stack L such Transformer encoders to update
the local motion embedding and obtain the local motion fea-
ture e1:k = [e1, ..., ek] as the output, with ei represents the
feature for time step i.

3.1.2 Global-range Transformer Encoder

We aim to encode all the N people’s motion in the scene.
In our method, this only needs to be calculated one time
and then can contact with any person’s local motion fea-
ture to predict the correspond person’s future motion. We
first apply a linear layer to each person’s motion xn1:k
and plus the sinusoidal positional embedding to get the
global motion embedding g1:N1:k = [g11 , ..., g

1
k, ..., g

N
1 , ..., g

N
k ]

for N persons in k time steps. We use L layers of
Transformers to encode the global motion embedding.
We apply the Multi-head Attention mechanism similar
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Figure 1: Network architecture. ⊗ represents concatenate and ⊕ represents add. On the right, we show the architecture of
the Transformer decoder. The encoder architecture is similar with the decoder except we perform self-attention.

to Eq. 1 to the global embedding which calculated as
Qi

glob = EglobW
(Q,i)
glob ,K

i
glob = EglobW

(K,i)
glob , V i

glob =

EglobW
(V,i)
glob where Eglob = [g11 , ..., g

1
k, ..., g

N
1 , ..., g

N
k ]T .

W
(Q,i)
glob , W (K,i)

glob and W (V,i)
glob are projection parameter ma-

trices. glob represents the global-range. Then we feed
them to the normalization and feed-forward layers same
as local-range Transformer encoder. After applying such
L Transformer encoders to the global embedding, we can
get the output o1:N1:k . We add our spatial positional encod-
ing to it and get the global motion feature f1:N1:k . We con-
catenate the local e1:k and global f1:N1:k features together as
H = [e1, ..., ek, f

1
1 , ..., f

1
k , ..., f

N
1 , ..., f

N
k ]T and feed them

to the decoder.
Spatial positional encoding. We propose a spatial po-

sitional encoding (SPE) technique on the outputs of the
global-range Transformer encoder. Before forwarding to
the Transformer decoder, we want to provide the spatial dis-
tance between the query token xk and the tokens of every
time step of each person x1:N1:k . Intuitively, the location infor-
mation helps clustering different persons in different social
interactions groups, especially in a scene with a crowd of
persons. We calculate SPE as,

SPE(xnt , xk) = exp(− 1

3J
||xnt − xk||2) (2)

3.1.3 Transformer Decoder
We send the local-global motion feature H together with a
static human pose xk at time step k into the decoder. We
use the similar Multi-head attention mechanism as the Trans-
former encoders. But differently, we take the single pose as
the query and use the feature from the encoders to get keys
and values. Specifically, We apply a linear layer to xk and
then get q in order to get the queryQdec, we get the keyKdec

and value Vdec both from the local-global motion feature H
as Qi

dec = qTW
(Q,i)
dec ,Ki

dec = HW
(K,i)
dec , V i

dec = HW
(V,i)
dec

where W (Q,i)
dec ,W (K,i)

dec and W (V,i)
dec are projection parameter

matrices. At the end of the decoder, we apply two fully
connected layers followed by Inverse Discrete Cosine Trans-
form (IDCT) [4, 35] and output an offset motion sequence
[∆x̂k, ...,∆x̂T−1] which can easily lead to the future 3D
motion trajectory x̂k+1:T . The architecture outputs sequence

directly prevents generating freezing motion [31]. Note we
also add residual connections and layer normalization be-
tween layers.

3.1.4 Motion Discriminator
The design of such encoder-decoder architecture helps to
predict the future motion. To ensure a natural and continuous
long-term motion, we use a discriminator D to adversially
train the Predictor P . The output motion x̂k+1:T is given as
input to the Transformer encoder with the same architecture
of the local-range encoder and we further use another two
fully connected layers to predict values∈ {1, 0} representing
that x̂k+1:T are real or fake poses. We use the ground-truth
future poses to provide as the positive examples. We train
the predictor P and discriminator D jointly.

3.2. Training
We train our predictor P with both the reconstruction

loss and the adversarial loss as LP = λrecLrec + λadvLadv

where λadv = 1 and λrec = 3 × 10−4 are constant coeffi-
cients to balance the training loss. We calculate the Lrec and
Ladv as follows,

Lrec =
1

T − k
ΣT−1

t=k ||∆x̂t −∆xt||2

Ladv =
1

T − k
||D(x̂k+1:T )− 1||2

(3)

We train our discriminator D following [27] with loss LD,

LD =
1

T − k
||D(x̂k+1:T )||2 +

1

T − k
||D(yk+1:T )− 1||2

(4)
where x̂k+1:T is from the predicted motion and yk+1:T is
from the real motion. We train the discriminator that classi-
fies the real ones as 1, where 1 ∈ RT−k represents all the
poses are natural.

4. Experiments
We perform our experiments on multiple datasets with

two settings. The first setting consists of a small number
of people (2 ∼ 3). We use CMU-Mocap as the training
data. We mix and make all the CMU-Mocap data consists



CMU-Mocap MuPoTS-3D 3DPW Mix1 Mix2
method (3 persons) (2 ∼ 3 persons) (2 persons) (9 ∼ 15 persons) (11 persons)

1 s 2s 3s 1 s 2s 3s 1 s 2s 3s 1 s 2s 3s 1 s 2s 3s
LTD [35] 1.37 2.19 3.26 1.19 1.81 2.34 4.67 7.10 8.71 2.10 3.19 4.15 1.72 2.58 3.45
HRI [34] 1.49 2.60 3.07 0.94 1.68 2.29 4.07 6.32 8.01 1.80 3.14 4.21 1.60 2.71 3.67
SocialPool [2] 1.15 2.71 3.90 0.92 1.67 2.51 4.17 7.17 9.27 1.85 3.39 4.84 1.72 3.06 4.26
Ours w/o Global 0.99 1.71 2.50 0.92 1.67 2.50 4.17 6.85 8.91 1.77 3.10 4.19 1.42 2.29 3.06
Ours w/o D 1.13 1.84 2.57 0.92 1.62 2.26 4.17 6.41 8.09 1.75 3.00 4.00 1.34 2.19 2.95
Ours w/o SPE 1.05 1.68 2.37 0.92 1.51 2.23 3.92 6.18 7.79 1.75 3.09 4.13 1.31 2.15 2.92
Ours 0.96 1.57 2.18 0.89 1.59 2.22 3.87 6.12 7.83 1.73 2.99 3.97 1.29 2.09 2.82

Table 1: MPJPE on different datasets. We compare the MPJPE with the previous SOTA methods and ablative baselines of
predicting 1, 2 and 3 seconds motion. Best results are shown in boldface.

Ours

GT

LTD

HRI

SocialPool

Input Output
Figure 2: Qualitative comparison. Left two columns are input and right three columns are outputs. Our result is the closest to
the real record and the others fail to predict a walking motion and predict a less accurate interaction motion.

of 3 persons in each scene. We sample test set from CMU-
Mocap in a similar way. We also test on MuPoTS-3D and the
3DPW dataset with the model trained on the CMU-Mocap
dataset. The second setting consists of scenes with more
people (9 ∼ 15). For the training data, We sample motions
from CMU-Mocap and Panoptic and then mix them. For the
test data, we sample one version from both CMU-Mocap
and Panoptic, namely Mix1. And we sample one version
from CMU-Mocap, MuPoTS-3D and 3DPW, namely Mix2.
In our experiment, we take 1-second motion as input and
predict the future 3 seconds(15 fps).

We use Mean Per Joint Position Error (MPJPE) [25] with-
out aligning as the metric to compare the prediction results
in 1, 2 and 3 seconds. We select two competitive state-of-
the-art single person motion prediction methods: LTD [35]
is a graph-based method and HRI [34] is an attention-based
method. Most relevant to our work is SocialPool [2], a
method uses social pool to model the interaction.

We report MPJPE in 0.1 meters of 1, 2 and 3 seconds
predicted motion on different datasets in Tab. 1. In both
cases with a small number and a large number of people, our
method achieves state-of-the-art performance for different
prediction time lengths. We achieve up to 20% improvement
when compared to the previous single-person-based meth-
ods [35, 34] and achieve up to 30% improvement compared
to the multi-person-based method [2]. In SocialPool [2],

the same global feature is added to all the persons which
interferes with the model’s prediction for each individual, es-
pecially when there are a large number of people. However,
in our design the model can use the features corresponding
to one person to query the global motion feature which auto-
matically allows it to use the motion information belonging
to other persons. We also perform ablation study on differ-
ent modules of our network by removing the global-range
encoder, discriminator and the spatial positional encoding
respectively to prove the effectiveness of each module.

We provide qualitative comparisons on CMU-Mocap in
Fig. 2. Our predictions are more natural and smooth while
being close to the real record. SocialPool [2] will quickly
produce freezing motion, which is consistent with the claims
in [5, 31]. Decoding based on an input seed sequence
(HRI [34]) or adding the input sequential residual (LTD [35])
to the output, will make the predicted motion have hysteresis
and repeat the history. For example, in a forward motion,
the prediction may jump back into temporally unreasonable
position and then continue to move forward. However, our
method, using a static pose as query and predicting a ∆x
sequence, could solve this problem effectively.
Conclusion. In this paper, we propose a novel framework
to predict multi-person 3D motion. We design a Multi-Range
Transformer architecture which outperforms state-of-the-art
on long-term 3D motion prediction.
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