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Figure 1: We propose to perform imitation learning for dexterous manipulation from human demonstration videos. We record human
videos on manipulation tasks (1st row) and perform 3D hand-object pose estimations from the videos (2nd row) for constructing the
demonstrations. We have a paired simulation system providing the same dexterous manipulation tasks for the multi-finger robot hand (3rd
row), including the relocate, pour, and place inside tasks.

Abstract
While significant progress has been made on understand-

ing hand-object interactions in computer vision, it is still
very challenging for robots to perform complex dexterous
manipulation. In this paper, we propose a new platform and
pipeline, DexMV (Dexterous Manipulation from Videos),
for imitation learning to bridge the gap between computer
vision and robot learning. We design a platform with: (i) a
simulation system for complex dexterous manipulation tasks
with a multi-finger robot hand and (ii) a computer vision
system to record large-scale demonstrations of a human
hand conducting the same tasks. In our new pipeline, we
extract 3D hand and object poses from the videos, and con-
vert them to robot demonstrations via motion retargeting.
We then apply and compare multiple imitation learning al-
gorithms with the demonstrations. We show that the demon-
strations can indeed improve robot learning by a large mar-
gin and solve the complex tasks. Project page with video:
https://yzqin.github.io/dexmv.

1. Introduction
Dexterous manipulation of objects is the primary means

for humans to interact with the physical world. Humans
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perform dexterous manipulation in everyday tasks with di-
verse objects. To understand these tasks, in computer vi-
sion, there is significant progress on 3D hand-object pose
estimation [3, 21] and affordance reasoning [1, 19]. While
computer vision techniques have greatly advanced, it is still
very challenging to equip robots with human-like dexterity.
Recently, there has been a lot of effort on using reinforce-
ment learning (RL) for dexterous manipulation with an an-
thropomorphic robot hand [10]. However, given the high
Degree-of-Freedom joints and nonlinear tendon-based ac-
tuation of the multi-finger robot hand, it requires a large
amount of training data with RL. Robot hands trained using
only RL will also adopt unnatural behavior. Given these
challenges, can we leverage humans’ experience in the in-
teraction with the physical world to guide robots, with the
help of computer vision techniques?

One promising avenue is imitation learning from hu-
man demonstrations [13, 15]. In this paper, we propose a
new platform and a new imitation learning pipeline for
complex and generalizable dexterous manipulation, namely
DexMV (Dexterous Manipuulation from Videos). We in-
troduce new tasks with the multi-finger robot hand (Adroit
Robotic Hand [8]) on diverse objects in simulation. We col-
lect real human hand videos performing the same tasks as
demonstrations. By using human videos instead of VR, it

https://yzqin.github.io/dex_from_video


largely reduces the cost for data collection and allows hu-
mans to perform more complex and diverse tasks. While the
video demonstrations might not be optimal for perfect im-
itation (e.g., behavior cloning) to learn successful policies,
the diverse dataset is beneficial for augmenting the training
data for RL, which can learn from both successful and un-
successful trials.

Our DexMV platform contains a paired systems with:
(i) A computer vision system which records the videos of
human hand performing dexterous manipulation tasks (1st
row in Figure 1); (ii) A physical simulation system which
provides the interactive environments for dexterous manip-
ulation tasks with a multi-finger robot hand (3rd row in Fig-
ure 1). The two systems are aligned with the same manip-
ulation tasks. With this platform, our goal is to bridge 3D
vision and robotic dexterous manipulation via a new imita-
tion learning pipeline.

Our DexMV pipeline contains three stages. First, given
the recorded videos from our computer vision system, we
extract the 3D hand-object poses from the videos (2nd row
in Figure 1). Unlike previous imitation learning studies
with 2-DoF grippers [22, 18], we need the human video
to guide the 30-DoF robot hand to move each finger in
3D space. Parsing the 3D structure provides critical and
necessary information. Second, we perform motion retar-
geting which converts the 3D human hand trajectories to
robot hand trajectories. An optimization-based approach is
proposed to align human-robot hands under kinematic con-
straints. Third, given the robot demonstrations, we perform
imitation learning in the simulation tasks. We investigate al-
gorithms which augment RL objectives with state-only [11]
and state-action [5, 13] demonstrations.

We experiment with three types of challenging tasks with
the YCB objects [2]. In our experiments, we benchmark
different imitation learning algorithms and show human
demonstrations improve dexterous hand manipulation by a
large margin. We hope our new platform and new pipeline
open up opportunities for research that connects imitation
learning and 3D vision.

2. DexMV Platform
As shown in Figure 2, the DexMV platform is composed

of a computer vision system to collect the videos of human
perform dexterous manipulation task and a simulation sys-
tem to provide the interactive environments for the same
tasks with multi-finger robot hand. We will talk about the
subsystem in the following paragraph.

2.1. Computer Vision System.

The computer vision system is used to collect human
demonstration videos on interacting with diverse real ob-
ject. In this system, we build a cubic frame (35 inch3) and
attach two RealSense D435 cameras on the top front and top

left of the frame. The manipulation videos will be recorded
using the two cameras as shown on the top left of Figure 2.

2.2. Simulation System.

Our simulation system is built on MuJoCo [20] with the
Adroit Hand [8]. We design multiple dexterous manipula-
tion tasks aligned with human demonstrations. As shown in
the bottom row of Figure 2, we perform imitation learning
by augmenting RL with the demonstrations from the com-
puter vision system. Once the goal-conditioned policy is
trained, it can be tested on achieving different manipulation
goals. We will introduce the imitation learning algorithms
in Section 3.3.

3. DexMV Pipeline
To bring the computer vision system and simulation sys-

tem in DexMV platform, we propose a novel pipeline called
DexMV pipeline. DexMV pipeline takes as input the hu-
man manipulation video collected in the computer vision
system, and learn dexterous manipulation skills for a multi-
finger robot. The DexMV pipeline contains three stage: (i)
3D hand-object pose estimation from videos, described in
Section 3.1. (ii) Hand motion retargeting to convert human
hand motion into robot motor command, described in Sec-
tion 3.2. (iii) Imitation learning in the simulation environ-
ment given robot demonstration from last stages. It will be
described in Section 3.3.

3.1. Hand-Object Pose Estimation

Object Pose Estimation: For each frame t in the video,
we use the trained model from PVN3D [4] to detect ob-
jects and predict their 6-DoF poses. By taking both of
the RGB image and the point clouds deprojected from the
depth image as inputs, the model first estimates the instance
segmentation mask. With dense voting on the segmented
point clouds, the model then predicts the 3D location of pre-
defined object keypoints.

Hand Pose Estimation We utilize the parametric
MANO model [14] to represent the hand in a differentiable
manner. Given a video, we use the off-the-shelf skin seg-
mentation [7] and hand detection [17] methods to obtain a
hand mask for every frame. We use the trained models in [9]
to predict the 2D hand joints and the MANO parameters
shape and pose parameters for every frame in the captured
sequence using the RGB inputs. We estimate the root joint
using the center of the depth image masked by segmenta-
tion.

3.2. Hand Motion Retargeting

To use the human demonstrations in our simulator, we
need to convert the human hand motion to robot hand mo-
tion. Hand motion retargeting is used to map the observed
human hand pose to the robot hand joints. The initial guess
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Figure 2: DexMV platform and pipeline overview. Our platform is composed of a computer vision system (colored with yellow) and a
simulation system (colored with blue). The goal is to learn dexterous manipulation skills in our platform with DexMV pipeline.
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Figure 3: Top row: Kinematic Chains and Task Space Vectors
(TSV) of human and robot hand. Bottom row: Two steps of hand
motion retargeting.

of the robot hand pose is computed via a fitness function,
which converts the human hand pose to robot joint config-
uration using a linear mapping. Given this initial guess, we
perform another optimization approach via task space vec-
tors. During optimization, we minimize the difference of
ten task space vectors: vectors from wrist proximal phalanx
plus vectors from proximal phalanx to tip for all five fingers.

3.3. Imitation Learning

State-Action Imitation Learning. We will introduce
two algorithms. The first one is the Generative Adversar-
ial Imitation Learning (GAIL) [6], which is the SOTA IL
method that performs occupancy measure matching to learn
parameterized policy. The key idea behind GAIL is that it

uses generative adversarial training to estimate the distance
and minimize it alternatively.

The second algorithm is Demo Augmented Policy Gradi-
ent (DAPG) [12]. It combines learning from demonstration
and policy optimization for better sample complexity and
resulting policies.

State-Only Imitation Learning. While state-action im-
itation approaches are shown to be effective, the action in-
formation computed from our motion retargeting approach
might not be ideal. Thus we also investigate the demon-
stration with State-Only Imitation Learning (SOIL) [11],
which extends DAPG to the state-only imitation setting and
addresses the challenge by employing an inverse dynamic
model hφ optimizing the objective,

4. Experiment

We investigate the empirical performance of several im-
itation learning methods on dexterous manipulation tasks
with DexMV. Specifically, the tasks are to relocate five dif-
ferent objects, pour and rearrange.

Implementation details. We parameterized the pol-
icy and value function in the RL methods with two sepa-
rate 2-layer MLPs and Trust Region Policy Optimization
(TRPO) [16] backbone. For each update iteration, we col-
lect 200 trajectories from the environments to estimate the
policy gradient and update both policy and value networks.
In the following experiments, the performance is evaluated
with three individual random seeds and the seeds are the
same across all comparisons.

For the state-action imitation baselines that require ac-
tion information such as GAIL+ and DAPG, we use in-
verse dynamic APIs provided by MuJoCo[20] to compute
the robot action.

Methods for comparison. In the main comparison,
we adopt SOIL, GAIL+, and DAPG as introduced in Sec-
tion 3.3 to incorporate the demonstrations and compare the
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Figure 4: Learning curves of the four methods on the relocate task with respect to five different objects. The x-axis is training iterations.
The shaded area indicates standard error and the performance is evaluated with three individual random seeds.

Task - Relocate
Model Mustard Sugar Box Tomato Soup Clamp Mug
SOIL 0.33± 0.42 0.67 ± 0.47 0.98± 0.02 0.89± 0.15 0.71± 0.35
GAIL+ 0.06± 0.01 0.00± 0.00 0.66± 0.47 0.52± 0.39 0.53± 0.37
DAPG 0.93 ± 0.05 0.00± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
RL 0.06± 0.01 0.00± 0.00 0.67± 0.47 0.51± 0.37 0.49± 0.36

Table 1: Success rate of the evaluated methods on the relocate
task with five different objects. The success is defined based on the
distance between object and target. The performance is evaluated
via 100 trials for three seeds.
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Model Success (%)
SOIL 3.5± 3.3
GAIL+ 3.4± 2.5
DAPG 27.2 ± 18.4
RL 1.3± 0.7

Figure 5: Pour. Left: learning curves; Right: table of the success
rate, based on the percentage of water particles poured into the
container.

results with a pure RL algorithm. For fair comparison, we
use TRPO as the policy gradient backbone to update the
agent policy for all four approaches.

4.1. Experiments with Relocate

To better understand the performance of imitation learn-
ing from human demonstration, we evaluate the four meth-
ods: SOIL, GAIL, DAPG and RL on the relocate tasks.
The results is presented in terms of success rate in Table 1
and training curve in Figure 4. The x-axis is the update
iterations during training and the average-return of y-axis
is normalized with the same threshold for all five relocate
tasks across different seeds. A trial is counted as success
only when the final position of objects after 200 iteration is
within 0.1 unit length to the specified target.

4.2. Experiments with Pour

The Pour task involves a sequence of dexterous manip-
ulations: reaching the mug, holding the mug, stably mov-
ing the mug, and pouring water into the container without
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Figure 6: Place Inside. Left: learning curves; Right: table of the
inside score, based on the volume of banana inside of the mug.
squirting. We report our results in Figure 5. We observe that
DAPG converges to a good policy with much fewer itera-
tions: 27.2% of the particles are poured into the container
on average. Without the demonstrations, pure RL will only
have a very small chance to pour few particles into the con-
tainer.

4.3. Experiments with rearrange

The Place Inside task requires the robot hand to first
pick up a banana, rotate it to the appropriate orientation,
and place it inside the mug. To measure the performance,
we define a metric Inside Score, which is computed based
on the volume percentage of the banana inside of the mug.
Since the banana is longer than the mug, we normalize the
score by dividing it with 78.19% (the largest possible vol-
ume percentage inside the mug). We present our results in
Figure 6, we find that DAPG outperforms other approaches
whereas RL hardly learns to manipulate the object.

5. Conclusion
To the best of our knowledge, DexMV is the first work

to provide a platform on computer vision/simulation sys-
tems and a pipeline on learning dexterous manipulation
tasks from human videos. We benchmark multiple imita-
tion learning algorithms and show how 3D pose estimation
can affect imitation learning. We hope this provides new
research opportunities for both robot learning and computer
vision.
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Chociej, Rafał Józefowicz, Bob McGrew, Jakub Pachocki,
Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,
Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. arXiv, 2018. 1

[11] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra
Malik. State-only imitation learning for dexterous manipu-
lation. IROS, 2021. 2, 3

[12] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giu-
lia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017. 3

[13] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giu-
lia Vezzani, John Schulman, Emanuel Todorov, and Sergey

Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. 2018. 1, 2

[14] Javier Romero, Dimitrios Tzionas, and Michael J Black. Em-
bodied hands: Modeling and capturing hands and bodies to-
gether. ToG, 36(6):245, 2017. 2

[15] Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey
Levine, and Chelsea Finn. Reinforcement learning with
videos: Combining offline observations with interaction.
arXiv preprint arXiv:2011.06507, 2020. 1

[16] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jor-
dan, and Philipp Moritz. Trust region policy optimization. In
International conference on machine learning, pages 1889–
1897. PMLR, 2015. 3

[17] Dandan Shan, Jiaqi Geng, Michelle Shu, and David Fouhey.
Understanding human hands in contact at internet scale. In
CVPR, 2020. 2

[18] Shuran Song, Andy Zeng, Johnny Lee, and Thomas
Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. Robotics and
Automation Letters, 2020. 2

[19] Omid Taheri, Nima Ghorbani, Michael J Black, and Dim-
itrios Tzionas. Grab: A dataset of whole-body human grasp-
ing of objects. In European Conference on Computer Vision,
pages 581–600. Springer, 2020. 1

[20] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012. 2, 3

[21] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network
for 6d object pose estimation in cluttered scenes. ArXiv,
abs/1711.00199, 2018. 1

[22] Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav
Gupta, Pieter Abbeel, and Lerrel Pinto. Visual imitation
made easy. arXiv e-prints, pages arXiv–2008, 2020. 2


