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Abstract

While grammar is an essential representation of natural
language, it also exists ubiquitously in vision to represent
the hierarchical part-whole structure. In this work, we study
grounded grammar induction of vision and language in a
joint learning framework. Specifically, we present VLGram-
mar, a method that uses compound probabilistic context-
free grammars (compound PCFGs) to induce the language
grammar and the image grammar simultaneously. We pro-
pose a novel contrastive learning framework to guide the
joint learning of both modules. We collect a large-scale
dataset, PARTIT, which contains human-written sentences
that describe part-level semantics for 3D objects. Exper-
iments on the PARTIT dataset show that VLGrammar out-
performs all baselines in image grammar induction and lan-
guage grammar induction. The learned VLGrammar natu-
rally benefits related downstream tasks. Specifically, it im-
proves the image unsupervised clustering accuracy by 30%,
and performs well in image retrieval and text retrieval. No-
tably, the induced grammar shows superior generalizability
by easily generalizing to unseen categories. Code and pre-
trained models are released at https://github.com/
evelinehong/VLGrammar.

1. Introduction

Inducing the underlying structures and grammars from
raw sensory inputs, e.g., vision and language [5, 23, 20,
11, 19, 3, 21, 15, 7], has been a long-standing challenge
in the field of artificial intelligence (AI). With the devel-
opment of unsupervised learning techniques, the unsuper-
vised grammar induction for natural language [16, 17, 10, 9]
has recently made satisfying progress. These works formu-
late the grammar induction of language as a self-contained
system that relies solely on textual corpora. Following this
trend, [18, 24] propose the visually grounded grammar in-
duction. They empirically show that if the constituents in a
sentence’s parse tree are well aligned with the image that
the sentence describes, the induced grammar will be more
accurate.

Visually grounded grammar induction takes one step fur-

seating 
area 

arm 
vertical
bars 

This is a chair with an irregular back, a square seat, two 
arms with vertical bars and horizontal bars, and curved legs.

This

front 
legs

arm 
horizontal 
bars

leg base

back 
legs

arms 

support 
system

chair

S

DT

VBZ

VP  is a chair with an irregular back, a square seat... 

NP

 a chairNP ...

  a square seat, two arms...NP

a chair with an irregular back, a...is

NP  an irregular back,

 a square seat,NP two arms with vertical bars and...NP

two armsNP With vertical bars and horizontal bars, ...PP
...

Figure 1: An example of a sentence parse tree aligned with an
image parse tree. The arrow lines represent production rules of
the image grammar and the language grammar. The dashed lines
represent alignment between the constituents of two modalities.
ther towards cognitive grammar [12, 13], a concept from
linguistic theory. Cognitive grammar argues that it is point-
less to analyze grammatical units without reference to their
semantics, which is grounded and structured by patterns of
perception, such as vision. However, previous works ground
all the constituents of a sentence with the embedding of a
single image [18, 24]. They focus on aligning the image
feature to language grammar but miss the hierarchical struc-
tures in the image. This is inconsistent with cognitive gram-
mar’s notion that a constituent’s semantic value does not
reside in one individual image base, but rather in the rela-
tionship between the substructure and the base. Part-whole
relationships are crucial in semantic structures [8]. Thus, it
is necessary to align the language grammar with the hierar-
chical structures in physical objects.

While the study of the hierarchical structure of images
has a long history [5, 23, 15, 7, 6, 22, 25], the structure
is mainly pre-defined by human and static across images.
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Therefore, challenges remain as: (1) how to represent flex-
ible part-whole hierarchies that vary with images using an
identical network [7], and (2) how to learn structure auto-
matically without pre-defined templates. One possible way
is to learn the image grammar that parses an object into
parts. Instead of allocating neurons to represent nodes in
the parse graph, we can use neurons to represent grammar
rules. The grammar rules are general for all the images and
can be recursively re-used to handle arbitrarily complicated
objects (e.g., a chair can have an arbitrary number of legs).

Inspired by the above ideas, we present VLGrammar, a
framework that jointly learns image and language gram-
mar. To achieve grounded learning, we calculate an align-
ment score between the image parse tree and the language
parse tree, and use a contrastive loss to learn the compound
PCFGs for both image and language jointly. We collect a
large-scale dataset, PARTIT, which contains 10,613 manu-
ally annotated descriptive sentences paired with the images
of objects and parts. Experiments on the proposed PARTIT
dataset show that our proposed VLGrammar outperforms
all baselines in both image grammar induction and lan-
guage grammar induction. Moreover, it naturally benefits
related downstream tasks, for example, improving the accu-
racy of unsupervised part clustering from „40% to „70%,
and achieving better performance in the image-text retrieval
tasks. Our image grammar trained on chair and table
can be easily generalized to unseen categories such as bed
and bag. Qualitative studies also show that our method is
capable of predicting part-whole hierarchies and recursive
structures of objects, as well as constituency parsing of sen-
tences.

2. The PARTIT Dataset

We present PARTIT, a large-scale dataset of manually an-
notated sentences that describe both the object-level and the
part-level features of an object. We use AMT to collect such
sentences. Given an image of an object together with the
images of highlighted parts of the object, a worker is asked
to use one sentence to describe all parts of the object. We
obtain „10,000 3D CAD models and their part annotations
from the PartNet dataset [14]. We choose four categories of
objects: chair, table, bed, and bag. Based on the and-
or templates provided by PartNet, we generate ground-truth
grammar rules of each object category for evaluation only.

3. Grounded Grammar Induction

In this section, we introduce the proposed VLGrammar
for grounded grammar induction in both vision and lan-
guage. Our model starts from the compound PCFG for in-
ducing the language grammar [9, 24] and generalizes this
idea to vision, which are jointly optimized by a contrastive
loss.

3.1. Compound PCFG for Language

A context-free grammar (CFG) can be defined as a 5-
tuple G “ pS,N ,P,Σ,Rq as in [9]. In natural language,
nonterminals N are constituent labels and preterminals P
are part-of-speech tags. A terminal node w is a word from
a sentence, and Σ is the vocabulary. During implementa-
tion, we do not have the ground truth constituent labels and
part-of-speech tags. Therefore, nonterminals and pretermi-
nals are sets of nodes (or clusters) which implicitly repre-
sent their functions.

S Ñ A, A P N
AÑ BC, A P N , B,C P N Y P
T Ñ w, T P P, w P Σ

(1)

A probabilistic context-free grammar (PCFG) extends
a grammar G with rule probabilities π “ tπrurPR, such
that the rule r has probability πr. Kim et al. extend neural
PCFGs to compound PCFGs and mitigate the context-free
assumptions by holding it conditioned on compound prob-
ability distribution [2]:

z „ pλpzq, πz “ frpz;EGq (2)

where EG “ wN (N P tSu YN Y P) are the symbol em-
beddings. pλpzq is a prior distribution of the latent variable
z with spherical Gaussian λ, and the per-sentence rule prob-
ability πz is parameterized by EG with a neural network fr.
πz takes one of the following forms [24, 9]:

πSÑA “
exp

`

uTAf1 prwS ; zsq
˘

ř

A1PN exp
`

uTA1f1 prwS ; zsq
˘ (3)

πAÑBC “
exp

`

uTBC rwA; zs
˘

ř

B1,C1PM exp
`

uTB1C1 rwA; zs
˘ (4)

πTÑw “
exp

`

uTwf2 prwT ; zsq
˘

ř

w1PΣ exp
`

uTw1f2 prwT ; zsq
˘ (5)

where u is a parameter vector, M denotes pN YPqˆpN Y
Pq. r¨; ¨s indicates vector concatenation, and f1p¨q and f2p¨q

are feedforward neural networks that encode the inputs.
The log marginal likehood log pθpwq of the observed

sentence w “ w1w2 . . . wn can be obtained by summing
out the latent tree structure using the inside algorithm [1]:

log pθpwq “ logp

ż

z

ÿ

tPTGpwq

pθpt | zqpλpzqdzq (6)

where TG consists of all parses of the sentence w under a
grammar G. Compound PCFGs use amortized variational
inference and compute the loss based on the evidence lower
bound (ELBO):

Lgpw;φ, θq “ ´ELBOpw;φ, θq

“ ´Eqφpz|wq rlog pθpw | zqs `KL rqφpz | wq}pλpzqs
(7)

where qφpz | wq is a variational posterior modeled by a neu-
ral network parameterized by φ.



3.2. Compound PCFG for Imgae

Compound PCFGs can be naturally extended to image
grammar. In a compound PCFG for image, S denotes an ob-
ject, e.g., a chair. Nonterminals N are types of middle-level
coarse parts. Preterminals P are types of fine-grained leaf-
parts. The middle-level parts can be further decomposed
into sub-parts which are either middle-level parts or leaf-
parts; for example, the base of a chair is decomposed into
the central support and the leg system, and the leg system is
further decomposed into several legs.

Eq. (3) and Eq. (4) can be directly applied to represent
the compound PCFG for image. However, Eq. (5) does not
work for image, since we do not have a fixed vocabulary for
images, and terminal nodes are varied w.r.t pixels. To ad-
dress this problem, we design a bottom-up perception mod-
ule to substitute the top-down generation in Eq. (5). Instead
of inducing the top-down grammar, we use a bottom-up per-
ception module to propose terminal nodes for T .

We consider the terminal nodes to be a sequence of leaf-
parts of an object v “ v1v2...vn. We want to assign a tag T
to each leaf part vi.

spT, viq “ uTT ft pψpviqq (8)

where ψ is a perception module, i.e., ResNet-18 in our
model. ft is a clustering model, which is a single-layer feed-
forward neural network that gives the score of clustering
leaf-part vi to the tag T and uT is a parameter vector for the
tag T . The rule probability of a preterminal to a leaf-part is
thus:

πTÑvi “
exppspT, viqq

ř

v1PΣ exppspT, v
1qq

(9)

All leaf parts in a training batch constitute Σ.
We maximize the log-likelihood of the part sequence

with ELBO:

Lgpv;φ, θq “ ´Eqφpz|vq rlog pθpv | zqs ´KL rqφpz | vq}pλpzqs

(10)
where qφpz | vq is a variational posterior.

Note that the image sequence v is independent of z given
the tags T “ T1T2...Tn of v. Therefore,

pθpv | zq “
ÿ

T

pθψ pv|T qpθG pT |zq

9
ÿ

T

pθψ pT |vqpθG pT |zq
(11)

where we sum over all possible tags for the part. θψ denotes
the parameters of the clustering module, and θG denotes the
parameters of Eq. (3) and Eq. (4) in the image grammar.

We notice that if T has higher probability given by the
grammar module, pθG pT |zq has a larger value, thus gives
larger weight for pθψ pT |vq. Therefore, the grammar mod-
ule can boost the training of the clustering module, and vice
versa. This is demonstrated in Section 4.2.

3.3. Joint Learning by Alignment

We propose to jointly learn the grammars for image and
language by aligning the paired image and sentence. Given
a sentence w “ w1 . . . wm where m is the total number of
words, a language constituent is defined as a span over this
sentence, denoted as wj “ wa . . . wb P rws where 0 ă a ă
b ď m and rws denotes the set of all possible spans overw.
Given an object v “ v1 . . . vn where n is the total number
of parts, a visual constituent is defined as a span over this
part sequence, denoted as vk “ vc . . . vd P rvs where 0 ă
c ă d ď n and rvs denotes the set of all possible sub-parts
over v. The embeddings of language and visual contituents
are obtained via bi-LSTM and ResNet, respectively.

The alignment score between a language constituent and
a visual constituent is defined as their cosine similarity:

spwj ,vkq fi cospwj ,vkq (12)

The alignment score between a sentence and an image is:

Spw,vq “
ÿ

twPTGw pwq
tvPTGv pvq

pptw|wqpptv|vq
ÿ

wjPtw
vkPtv

spwj ,vkq

“
ÿ

wjPrws

vkPrvs

ÿ

twPTGw pwq
tvPTGv pvq

1twjPtwu1tvkPtvupptw|wqpptv|vqspwj ,vkq

“
ÿ

wjPrws

vkPrvs

ppwj |w;Gwqppvk|v;Gvqspwj ,vkq

(13)
where ppwj |w;Gwq “

ř

twPTGw pwq 1twjPtwupptw|wq

and ppvk|v;Gvq “
ř

tvPTGv pvq 1tvkPtvupptv|vq are the
conditional probabilities of a constituent given the sen-
tence/object, marginalized over all possible parse trees un-
der the current grammars. They can be efficiently computed
with the inside algorithm and automatic differentiation [4].

Given a training batch D “ tW,Vu “ tpwpiq,vpiqqu,
the contrastive loss is defined as:

LCpW,Vq “
ÿ

i,m‰i

rSpwpmq,vpiqq ´ Spwpiq,vpiqq ` δs+

`
ÿ

i,m‰i

rSpwpiq,vpmqq ´ Spwpiq,vpiqq ` δs+
(14)

where δ is a constant margin, and r¨s+ denotes maxp0, ¨q.
The overall training loss function is then:

L “ λwLGpW;φw, θwq ` λvLGpV;φv, θvq ` λCLCpW,Vq
(15)

4. Experiments and Results
4.1. Grammar Induction

Table 1 shows the main results of grammar induction of
vision and language. Our method outperforms all baselines
by a large margin with regard to image F1 scores.



Table 1: The performance of grammar induction. “C” and “I” denote corpus-level and instance-level F1 scores, respectively. L-PCFG-P
denotes a pretrained language PCFG of the sentences of all categories. L-PCFG and V-PCFG are language and visual PCFGs. L-PCFG-
VG and V-PCFG-LG are visually-grounded and language-grounded PCFGS. SCAN is the unsupervised clustering module that we use to
pretrain ResNet. “VLG w/o SCAN” denotes that we do not use SCAN to pretrain the unsupervised clustering module of VLGrammar.

Model Vision Grammar Language Grammar
All Chair Table Bed Bag All Chair Table Bed Bag

C I C I C I C I C I C I C I C I C I C I
Left-Branch 16.4 20.2 9.9 11.5 21.1 26.3 38.8 59.4 54.2 60.0 16.2 17.6 19.2 19.8 13.7 15.8 10.5 12.0 8.4 8.9

Right-Branch 40.8 49.1 42.8 48.0 39.1 50.2 12.8 20.8 81.0 97.5 49.2 53.5 43.7 48.6 54.2 58.1 43.7 46.2 68.3 69.3
ON-LSTM / / / / / / / / / / 30.7 33.4 32.5 34.4 28.9 32.4 27.3 29.0 39.4 38.5
L-PCFG-P / / / / / / / / / / 47.8 49.4 41.4 44.9 53.6 53.5 44.9 44.3 63.7 63.5
L-PCFG / / / / / / / / / / 48.4 50.3 42.2 46.2 53.6 53.5 55.3 55.1 71.2 71.4
V-PCFG 47.5 59.3 51.6 59.0 43.3 59.2 36.2 48.2 82.4 91.3 / / / / / / / / / /

L-PCFG-VG / / / / / / / / / / 49.0 49.6 42.3 44.0 54.6 54.3 56.0 54.6 73.0 73.0
V-PCFG-LG 44.2 52.7 42.0 47.5 45.6 56.6 38.8 54.3 88.2 95.7 / / / / / / / / / /
VLGrammar 51.4 63.4 56.4 65.9 46.3 60.5 38.1 59.7 94.1 98.0 51.3 51.9 47.8 49.4 54.0 53.8 56.2 54.8 73.6 73.6

VLG w/o SCAN 44.7 55.5 30.5 33.6 57.9 75.4 29.0 56.4 88.2 95.7 49.0 49.8 43.4 45.3 53.7 53.5 55.1 54.0 72.6 72.6

Table 2: The accuracy of the unsupervised part clustering.

Model All Chair Table Bed Bag
SCAN 41.3 43.5 37.5 59.3 88.9

V-PCFG 61.6 68.3 58.3 69.9 88.9
V-PCFG-LG 65.4 66.8 63.2 71.8 90.5
VLGrammar 69.1 71.6 66.0 75.1 90.5

VLG w/o SCAN 64.4 62.0 66.2 60.4 90.5

4.2. Part Clustering

Table 2 shows the accuracy of the unsupervised part clus-
tering in the bottom-up module of the image compound
PCFG. After training VLGrammar, the accuracy of the part
label prediction boosts from 41.3% to 69.1%. This confirms
the argument derived from Eq. (11), that the induced gram-
mar can benefit the part clustering in a top-down manner.
One surprising observation is that even without the SCAN
pretraining, VLGrammar performs quite well in the part
clustering.

4.3. Image-Text Retrieval

Since an alignment score is computed to measure the
similarity between an image and a sentence, it’s natural to
use it for image-text retrieval. VLGrammar can outperform
the baseline by a large margin and achieve satisfying per-
formance, which is an extra bonus naturally earned with our
grammar induction framework.

Table 3: The accuracy of image-text retrieval. “IR” stands for
text-to-image retrieval and “TR” is for image-to-text retrieval.

Model Chair Table Bed Bag
IR TR IR TR IR TR IR TR

Baseline 24.1 28.5 29.8 31.2 20.1 20.1 19.1 24.5
L-PCFG-VG 34.5 36.9 39.3 42.0 35.5 38.4 23.0 28.7
V-PCFG-LG 25.9 27.8 38.8 41.8 29.6 25.7 23.8 24.9
VLGrammar 33.2 39.0 39.8 42.5 39.6 38.2 24.6 29.3

4.4. Cross-category Generalization

To evaluate the model’s generalization ability, we train
a shared image compound PCFG for certain object cat-
egories, and then test on unseen categories. The results

shown in Table 4 indicate that the learned grammars can
indeed be transferred to novel object categories.

Table 4: The performance of image grammars on all categories,
while being trained on only chair and table.

Model Seen Unseen
Chair Table Bed Bag

C I C I C I C I
V-PCFG 43.9 52.7 38.1 54.5 20.7 33.1 82.4 91.3

V-PCFG-LG 44.3 54.1 38.5 54.8 25.6 50.4 88.2 95.7
VLGrammar 44.8 53.4 41.1 56.7 29.4 44.2 88.2 95.7

4.5. Qualitative Study

 (this ((chair has) ((a (short (square (back ,)))) ((square (seat ,)) ((((((2 (short 
front)) and) (((2 short) back) (vertical arm))) bars) ,) ((((4 (horizontal arm)) bars) 
,) (and ((4 straight) legs))))))))

((((the tabletop) (is (held up))) with) ((four legs) (and 
((((three leg) bars) to) (provide stability))))))

(this (is (a ((bag with) 
((((a long) body) ,) 
(((((2 handles) (on (the 
side))) (of it)) ,) (and (a 
(shoulder strap)))))))))

Figure 2: Qualitative examples of parse trees predicted by VL-
Grammar. We visualize the image parse trees and the language
parse trees derived by the VLGrammar. Since the language parse
trees are large, we use a bracket form to represent them.

Fig. 2 visualizes several examples of parse trees pre-
dicted by VLGrammar. From the examples, we can see that
our model can capture capture precise part-whole hierar-
chies of the images. Moreover, it deals with repetitive parts
with recursive structures. It also excels at grouping phrases
that refer to parts in the images.
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