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Abstract

We propose a novel technique for producing high-quality
3D models that match a given target object image or scan.
Our method is based on retrieving an existing shape from
a database of 3D models and then deforming its parts to
match the target shape. Unlike previous approaches that in-
dependently focus on either shape retrieval or deformation,
we propose a joint learning procedure that simultaneously
trains the neural deformation module along with the embed-
ding space used by the retrieval module. This enables our
network to learn a deformation-aware embedding space, so
that retrieved models are more amenable to match the tar-
get after an appropriate deformation. In fact, we use the
embedding space to guide the shape pairs used to train the
deformation module, so that it invests its capacity in learn-
ing deformations between meaningful shape pairs. Further-
more, our novel part-aware deformation module can work
with inconsistent and diverse part-structures on the source
shapes. We demonstrate the benefits of our joint training
not only on our novel framework, but also on other state-
of-the-art neural deformation modules proposed in recent
years. Lastly, we also show that our jointly-trained method
outperforms various non-joint baselines.

1. Introduction

Creating high-quality 3D models from a reference im-
age or a scan is a laborious task, requiring significant ex-
pertise in 3D sculpting, meshing, and UV layout. While
neural generative techniques for 3D shape synthesis hold
promise for the future, they still lack the ability to create
3D models that rival the fidelity, level of detail, and overall
quality of artist-generated meshes [10]. Several recent tech-
niques propose to directly retrieve a high-quality 3D model
from a database and deform it to match a target image or
point cloud, thereby approximating the target shape while
preserving the quality of the original source model. These
prior methods largely focus on one of two complementary
subproblems: either retrieving an appropriate mesh from a
database [5, 1], or training a neural network to deform a
source to a target [2, 13, 14, 8]. In most cases, the static
database mesh most closely matching the target is retrieved,
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Figure 1. Given an input target we use jointly-learned retrieval and
deformation modules to find a source model in a heterogeneous
database and align it to the target. We demonstrate that our joint
learning outperforms static retrieval and non-joint baselines.

and then deformed for a better fit [4]. The retrieval step
is not influenced by the subsequent deformation procedure,
and thus ignores the possibility that a database shape with
different global geometry nevertheless possess local details
that will produce the best match after deformation.

In this paper, we argue that retrieval and deformation
should be equal citizens in a joint problem. Given a
database of source models equipped with some parametric
representation of deformations, our goal is to learn how to
retrieve a shape from the database and predict the optimal
deformation parameters so it best matches a given target. A
key feature of our method is that both retrieval and deforma-
tion are learnable modules, each influencing the other and
trained jointly. While the benefit of deformation-aware re-
trieval [11] has been explored previously, we contribute the
notion of retrieval-aware deformation: our learnable defor-
mation module is optimized for fitting retrieved shapes to
target shapes. Thus, the retrieval module is optimized to re-
trieve sources that the deformation module can fit well to
the input target, and the deformation module is trained on
sources the retrieval module predicts for the input target,
thereby letting it optimize capacity and learn only meaning-
ful deformations.

We further evise a differentiable, part-aware deforma-
tion function that deforms individual parts of a model while
respecting the part-to-part connectivity of the original struc-



ture (Figure 1). Importantly, it accommodates varying num-
bers of parts and structural relationships across the database,
and does not require part labels or consistent segmentations.
This holistic view of joint retrieval and deformation is es-
pecially important when considering heterogeneous collec-
tions of shapes “in the wild” that often vary in their part
structure, topology, and geometry. We evaluate our method
by matching 2D image and 3D point cloud targets and
demonstrate that our approach outperforms various base-
lines. The full paper can be found at [12].

2. Method

Overview. We assume to possess a database of parametric
source models s 2 S, and we aim to jointly train a deforma-
tion and retrieval module to choose a source and deform it to
fit a given target t (an image or a point cloud), with respect
to a fitting metric Lfit (we use chamfer in all experiments).
Each source also has parameters defining its individual de-
formation space, that are optimized during training.

Our deformation module is designed to enable a differ-
ent deformation function Ds for each source s, based on its
parts. The retrieval module uses embeddings of the sources
and the target into a latent space R, where it retrieves based
on a distance measure dR, which enables the retrieval of the
source shape that best fits to the target after deformation.

The training consists of optimizing the latent retrieval
space R and the deformation functions {Ds}:

minLfit (Ds0(t), ttrue) ,

where s0 is the closest source to target t in latent space, w.r.t
the distance measure dR(s0, t), and ttrue is the correspond-
ing true shape.

2.1. Joint Deformation and Retrieval Training

It is critical for our approach to optimize the parameters
of R and {Ds} jointly. First, it enables the deformation
module of each source to efficiently utilize its capacity and
specialize on relevant targets that it could fit to. Second, it
allows the retrieval module to create a deformation-aware
latent space where sources are embedded closer to the tar-
gets they can deform to.

Soft Retrieval for Training. The retrieval module em-
beds the sources and the target in the latent retrieval space
R. The proximity in latent space is used to define a biased
distribution that can be loosely interpreted as the probability
of source s being deformable to t:

PR(s, t) = p(s; t,S, dR,�0), (1)

where

p(s; t, S̃, d̃, �̃) =
exp(�d̃2(s, t)/�̃2(s))

P
s02S̃ exp(�d̃2(s0, t)/�̃2(s))

,

d̃ : (S⇥T) ! R is a distance function between a source
and a target (T is the target space), and �̃ : S ! R is
a potentially source-dependent scalar function. Though,
�0(·) = 100 is a constant set for all experiments.

Instead of choosing the highest-scoring source according
to the probability PR, we perform soft retrieval and sample
K = 10 retrieval candidate sources from the distribution:

si ⇠ PR(s, t), 8i 2 {1, 2, ...,K}.

The candidates St = {s1, ..., sK} sampled via our soft
retrieval are then used to train both our retrieval module to
learn R and deformation module for source-depedent de-
formation functions {Ds}.

The soft retrieval is crucial for our training: 1) adding
randomness to the retrieval ensures that the latent space is
optimized with respect to both high-probability instances
and low-probability ones, that may reverse roles as the de-
formation module improves. 2) On the other hand, train-
ing the deformation module with a bias towards high-
probability sources and not random ones ensures it is aware
of the retrieval module and expands its capacity on mean-
ingful matches.

Training. We train the two modules jointly in an alter-
nating fashion, keeping one module fixed when optimizing
the other, and vice versa, in successive iterations. To train
the retrieval module, we deform the candidate sources and
compute their fitting losses to the target. We update our la-
tent space R by penalizing the discrepancy between the dis-
tances in the retrieval space dR and the post-deformation fit-
ting losses Lfit using softer probability measures estimated
from the distances of the sampled candidates:

Lemb =
KX

k=1

| p(sk, t,St, dR,�0)� p(sk, t,St, dfit,�k)|,

(2)
where

dfit(s, t) = Lfit(Ds(t), ttrue), (3)

and �k is a source-dependent scalar representing the pre-
dicted range of variations of each source model s 2 S,
which is also learned. For the deformation module, we
update the deformation functions {Dsk} for the K biased
samples by minimizing the post-deformation fitting losses
weighted by their soft probability measures:

Ldef =
KX

k=1

p(sk, t,St, dR,�0)Lfit(Dsk(t), ttrue). (4)

This weighting scheme puts greater weight on sources
that are closer to the target in the embedding space, thus fur-
ther making the deformation module aware of the retrieval
module, and allowing it to specialize on more amenable
sources with respect to the training target.
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Figure 2. During training, given a target image or a point cloud and a database of deformable sources, we retrieve a subset of source models
based on their proximity in the retrieval space, and use the structure-aware deformation module (right) to fit each source. Our deformation
module uses encoded target, global and per-part source codes to predict per-part deformation parameters.

We also further run an inner deformation optimization to
fit the source to the target shape, and directly run SGD on
the deformation parameters until convergence of the fitting
loss. See the supplementary for the full details.

2.2. Structure-Aware Neural Deformation

While our joint training approach described in Sec-
tion 2.1 is generic and can work well with different param-
eterization of deformations, its greatest advantage is that it
enables our deformation space to vary greatly between each
source without having the deformation module learn subpar
deformations. We thus devise a deformation module with a
heterogeneous space of part-based deformations as shown
in Figure 1, which vary per each source, a necessary fea-
ture if one wants to tailor the deformations to be restricted
to preserve and adjust part structures.

To get meaningful parts, we use manual segmentations
from PartNet [6] or automatic segmentations (preprocess-
ing) of ComplementMe [9], produced by grouping con-
nected components in raw meshes. Our deformation mod-
ule predicts a simple deformation consisting of translation
and axis-aligned scaling for each part in a source model.
See supplementary for the details on the prediction. The
number of parts for different sources vary, making the de-
formation functions source-dependent {Ds}. We abuse the
notation a bit and let D denote our deformation module.

We propose to use a neural network which can be ap-
plied to each part separately, thus making it applicable to
models with varying part-constellations, as opposed to pre-
vious methods. Namely, we assign to each source a global
code sglob

D 2 Rn1 , and for each part within the shape, we as-
sign a local code si=1...Ns

D 2 Rn2 . The target is encoded via
an encoder (PointNet [7] for point clouds and ResNet [3]
for images) into a latent vector tD = ED(t) 2 Rn3 . We
set n1 = n3 = 256 and n2 = 32 for all experiments. The
global, local, and target codes are concatenated and fed to
a lightweight 3-layer MLP (512, 256, 6), P , which outputs
the deformation parameters of the corresponding part. The
deformation parameters of all parts are then used to obtain
the final deformed source shape. Each source’s global and

Input Retrieved Deformed Input Retrieved Deformed
Figure 3. We test our trained method on online product images.

local codes are optimized in an auto-decoder fashion during
the training of the deformation module. Figure 2 (right) il-
lustrates our module. We additionally add a symmetry loss
in training our deformation module to enforce bilateral sym-
metry of the output deformed shapes as regularization, more
details are found in the supplementary.

3. Results

In this section, we show results on the image-to-mesh
set-up. Please see the full paper [12] or the supplementary
material for more details and results.

3.1. Image-to-Mesh

We first test our system on product images “in the wild”
as well as images from our test set and show qualitative re-
sults for retrieval and deformation in Figures 3 and 4. Note
how retrieved results have compatible structure to the in-
put, which then enables the deformation technique to match
the source to the target. We quantitatively evaluate perfor-
mance of our method and report chamfer distances in Ta-
ble 1 (Ours) together with the chamfer distances with the
inner deformation optimization (Ours w/ IDO). Since IDO
step described significantly increases training time, we do
not use it in ablations and comparisons.
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Figure 4. Comparison between our approach and baselines for the image-to-mesh experiment.

Chair Table Cabinet

R 1.926 2.235 2.228
R+DF 1.969 2.705 2.035

DAR (Retrieval Only) 1.345 2.058 3.489
DAR+DF 1.216 1.621 1.333

Uniform Sampling 1.118 1.486 1.318
Ours 1.005 0.970 1.220

Ours w/ IDO 0.976 0.935 1.141

Table 1. Comparing our method to various baselines and ablations
on image-to-mesh benchmark (chamfer distances, ⇥10�2).

Retrieval Baselines. We compare our method to a vanilla
image-to-shape retrieval technique [5] (denoted by R).
This baseline first constructs the latent space by projecting
shape-to-shape chamfer distance matrix to 256-dimensional
space via MDS, and then trains a ResNet [3] encoder to map
images to that latent space with L2-loss. Since any retrieval
baseline can also work with a pre-trained neural deforma-
tion, we also train our structure-aware deformation mod-
ule on random pairs of shapes (i.e., ablating the joint train-
ing procedure) and report results with neural deformation
applied to the retrieved results (R+DF). Since this vanilla
baseline retrieves only based on geometric similarity and
does not account for deformation, the retrieved shapes may
not deform to targets well. Hence, there is no improvement
when deforming with the pre-trained deformation function.

The second retrieval baseline is the deformation-aware
retrieval [11], where we also use our structure-aware de-
formation module pre-trained on random pairs. For this
baseline we report results for retrieval (DAR) as well
as deformation (DAR+DF). Our results show that being
deformation-aware is not sufficient, and it is important for
deformation module to be trained with retrieved shapes.

Biased Sampling Ablation. Our joint training benefits
from biasing sampling of retrieval targets (Eq. 1). To ab-
late this, we sample from a uniform distribution, i.e., each

Chair Table Cabinet

DF 0.748 0.702 0.706
Uniform Sampling 0.755 0.690 0.701

Ours 0.681 0.584 0.675

Ours w/ IDO 0.669 0.533 0.689

Table 2. Improvement in deformation module for image-to-mesh
task with oracle retrieval due to joint training (chamfer ⇥10�2).
source is sampled with equal probability during training. In
this setting, while the retrieval and deformation modules are
still trained together, they are less aware of which samples
are most relevant at inference time and thus yield higher
errors (see Uniform Sampling in Table 1).

Improvement in Deformation Module. In addition to
holistic improvement to the final output, we would like to
evaluate the effect of joint training on deformation module.
To do this, we use oracle retrieval where for each test target,
we deform all sources and pick the one with the smallest fit-
ting error. Our joint training allows the deformation module
to specialize on targets that are a good fit. Thus, as shown
in Table 2, our method achieves the lowest fitting error for
the best-fit sources with respect to the deformation mod-
ule trained on all pairs (DF), and the deformation module
trained without the biased sampling (Uniform Sampling).

4. Conclusion

To summarize, we propose a joint training for retrieval-
and-deformation problem, where the neural modules inform
one another, yielding better matching results with respect to
image and point cloud targets. Our joint training procedure
offers improvements regardless of the choice of the neural
deformation module. We further propose a novel structure-
aware deformation module that is especially suitable for
hetereogeneous datasets of source models with very diverse
parameterizations of deformations. Our method does not
require consistent manual segmentations or part labels and
can work with imprecise automatic segmentations.
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