
Multi-Plane Program Induction with 3D Box Priors

Yikai Li1,2∗ Jiayuan Mao1∗ Xiuming Zhang1

William T. Freeman1,3 Joshua B. Tenenbaum1 Noah Snavely3 Jiajun Wu4

1MIT CSAIL 2Shanghai Jiao Tong University 3Google Research 4Stanford University
http://bpi.csail.mit.edu

This supplementary document is organized as the follow-
ing. First, we revisit the related work in Appendix A. Second,
in Appendix B, we describe four-step inference algorithm
we use to infer box programs for inner views in detail. Third,
in Appendix C, we show the mathematical details of how to
reconstruct the 3D positions and surface normal vectors of
different planes based on the plane segmentation for a box’s
inner views (see Appendix D for outer views). Fourth, in
Appendix D, we present the Box Program Induction (BPI)
applied to outer views of boxes. Next, in Appendix E, we
discuss the implementation details of BPI, including the
domain-specific language. Finally, we present more qualita-
tive and quantitative results on box program induction, plane
segmentation, image inpainting, and image extrapolation in
Appendix F.

A. Related Work
Visual program induction. Computer graphics re-
searchers have used procedural modeling (mostly top-
down) for representing 3D shapes [18, 33] and indoor
scenes [35, 19, 29]. With advances in deep networks, some
methods have paired top-down procedural modeling with
bottom-up recognition networks. Such hybrid models have
been applied to hand-drawn sketches [11], scenes with sim-
ple 2D or 3D geometric primitives [31, 24], and markup
code [9, 5]. The high-dimensional nature of procedural pro-
grams poses significant challenges to the search process;
hence, even guided by neural networks, these works fo-
cus only on synthetic images in constrained domains. SPI-
RAL [12] and its follow-up SPIRAL++ [26] use reinforce-
ment learning to discover latent “doodles” that are later used
to compose the image. Their models work on in-the-wild
images, but cannot be directly employed in tasks involving
explicit reasoning, such as image manipulation and anal-
ogy making, due to the lack of program-like, interpretable
representations.

In the past year, Young et al. [40] and Mao et al. [25]
integrated formal programs into deep generative networks
to represent natural images, and later applied the hybrid
representation to image editing. Li et al. [20] extended these

models by jointly inferring perspective effects. All these
models, however, assume a single plane in an image, despite
the fact that most images contain multiple planes such as
floor and ceiling. Our BPI moves beyond the single-plane
assumption by leveraging box priors.

Image manipulation. Image manipulation, in particular
image inpainting, is a long-standing problem in graph-
ics and vision. Pixel-based [1, 3] and patch-based meth-
ods [10, 4, 14] achieve impressive results for inpainting
regions that requires only local, textural information. They
fail on cases requiring high-level, structural, or semantic
information beyond textures. Image Melding [7] extends
patch-based methods by allowing additional geometric and
photometric transformations on patches, but ignores global
consistency among patches. Huang et al. [16] also use per-
spective correction to assist patch-based inpainting, but rely
on vanishing points detected by other methods. In contrast,
BPI segments planes and estimates their normals based on
the global regularity of images.

Advances in deep networks have led to impressive in-
painting algorithms that integrate information beyond lo-
cal pixels or patches [17, 39, 41, 23, 42, 46, 38, 37, 28].
In particular, deep models that learn from a single image
(a.k.a., internal learning) produce high-quality results for
image manipulation tasks such as inpainting, resizing, and
expansion [32, 46, 30]. BPI also operates on a single image,
simultaneously preserving the 3D structure and regularity
during image manipulation.

B. Box Program Induction for Inner views

In this section, we present the details of the box program
induction for inner views of boxes, following Sec. 2.3 of our
main paper.

Step 1: Visual cue detection. Following the box prior, all
inner views of a box contain a single vanishing point and
four intersection lines that are the intersection between the
two walls, the ceiling, and the floor in 3D. These intersection

http://bpi.csail.mit.edu

(a) Input Image

(b) Vanishing Point
and Wireframe Detection

(c) Filtered Wireframes (d) Plane Segmentation (e) Rectified Planes
and Inferred Regularity

R
ank

…

…

(f) Box Programs

Step 1 Step 2 Step 3 Step 4

…

…

…

…

Figure 1: Our Box Program Induction finds the best-fit program
that describes the input image (a). It first detects the vanishing
point and wireframe segments (b), followed by a filtering step (c).
It then constructs a set of candidate plane segmentation maps (d).
Given each plane segmentation, it rectifies each plane and infers
its regularity structure (e). We rank all candidate box programs by
their fitness (f); the starred candidate is the best.

lines will be projected onto the image plane as four lines
that intersects at the vanishing point. We use this property
to constrain the candidate plane segmentation. Leveraging
vanishing point information for inferring box structures of
scenes has also been studied in [15].

Given an input image (Fig. 1a), we apply NeurVPS [44]
to detect the vanishing point and L-CNN [45] to extract wire-
frames in the image. We use the most confident prediction
of NeurVPS as the vanishing point vp ∈ R2, which is a 2D
coordinate on the image plane. Each wireframe segment is
represented as a segment AB on the image, from (xA, yA)
to (xB , yB), as illustrated in Fig. 1b. Next, we filter out wire-
frame segments whose length is smaller than a threshold δ1
or whose extension does not cross a neighbourhood centered
at vp with radius δ2. The remaining wireframe segments,
denoted by the set WF , are illustrated in Fig. 1c.

Step 2: Plane segmentation. We then enumerate all
combinations of four wireframe segments from WF . As
these wireframe segments si = [(xAi , y

A
i), (xBi , y

B
i)], i =

1, 2, 3, 4 may not intersect at a single point, we compute a
new vanishing point vp∗ that minimizes

∑
i dist(vp

∗, si),
where dist is the distance between the point vp∗ and the line
containing segment si. Next, we connect the new vanishing
point vp∗ and the farther end of each si to get four rays.
These four rays partition the image into four parts, which
we treat as the segmentation of four planes, as illustrated in
Fig. 1d.

Step 3: Plane rectification and regularity inference.
Fixing the camera at the world origin, pointing in the +z
direction, we then compute the 3D position and surface nor-
mal of each plane. Since the distance between camera and
the corridor is coupled with the focal length of the camera,

here we use a fixed focal length of f = 35mm*. Based on
these assumptions, the four rays can unambiguously deter-
mine the 3D positions and surface normals of four planes.
The proof can be found in the supplemental material.

Based on the inferred surface normal, we can rectify each
plane, yielding a set of rectified images {J1, J2, · · · , J4}.
For each rectified plane, we search for the best plane
program that describes it, based on the fitness func-
tion F = −

∑
a,b

[
‖Ji[c(a, b)]− Ji[c(a+ 1, b)]‖22 +

‖Ji[c(a, b)]− Ji[c(a, b+ 1)]‖22
]
. The inferred plane regu-

larity structures are shown in Fig. 1e.

Step 4: Box program ranking. We sum up the fitness
score for four planes in each candidate segmentation as the
overall program fitness. We use this score to rank all candi-
date segmentations, and choose the program with the highest
fitness to describe the entire image.

C. Plane Reconstruction from Segmentation in
Inner Views

In an inner view of a box, we use the plane segmentation
of the input image to determine the 3D positions and surface
normal vectors of four planes. The plane segmentation is
represented as four rays starting from the detected vanishing
point. Our reconstruction assumes a pinhole camera model
with no lens distortion, as illustrated in Fig. 2a.

We start by defining the 3D coordinate system. We define
the position of the camera pinhole O as origin of the coordi-
nate system. We also define the optical axis of the camera
(i.e., the ray from the center of the image plane Π′ to O) as
the +z axis.
V ′ denotes the vanishing point shown on the image plane.

Four rays starting from V ′ will intersect with the image
boundary at four points {I ′k | k = 1, 2, 3, 4}. The line seg-
ments {V ′I ′k | k = 1, 2, 3, 4}, namely the intersection line
segments, are 2D projections of the intersection lines in 3D,
between four planes. We also denote these 3D intersections
lines as {IkEk | i = 1, 2, 3, 4}, where Ik is the correspond-
ing 3D projection of I ′k, and Ek is the 3D projection of an
arbitrary point on the 2D line segment V ′I ′k. Thus, all lines
{I ′kIk | k = 1, 2, 3, 4} should intersect at the optical center
O.

As can be seen in Fig. 2a, the focal length (i.e. the dis-
tance between the image center and the optical center O)
is correlated with the distance between Ik and O (i.e., the
camera-to-subject distance)†. Moreover, the aspect ratio of

*Following common practice, we also fix other camera intrinsic prop-
erties: optical center to (0, 0), skew factor to 0, and pixel aspect ratio to
1.

†Formally, we need three planes that are perpendicular to each other to
determine the focal length based on the perspective effect. However, we
have only two such planes here. See Liebowitz et al. [21] for a detailed
discussion.

Wireframe
Vanishing Point
Camera Pinhole

𝐼!

𝐼"𝐼#

𝐼$

𝐸!

𝐸"

𝐸$

𝐸#

𝐼#%

𝐼$%

𝐼"%

𝐼!%
Image Plane: Π′

𝑉%

Slope=𝑣

(a) Perspective projection in an inner view (b) Orthographic projection from the vanishing point

𝑉%

𝐼#%%

𝑦 =
𝑤
! 𝑥

𝑦 =
𝑤"
𝑥

𝑦 =
𝑤#𝑥

𝑦 =
𝑤
$ 𝑥

𝐼"%%

𝐼!%%

𝐼$%%

Slope=𝑢

Orthographic Plane: Π′′

𝑂

Figure 2: Illustration of (a) the perspective projection in an inner
view of the box (image upside down to be consistent with the
projection), and (b) the orthographic projection centered at the
vanishing point.

the image sensor is correlated with the ratio between the
sizes of four planes (i.e., the “aspect ratio” of the box). Thus,
it is impossible to fully determine the focal length and the
camera aspect ratio from this single image. Given this ambi-
guity, we assume the focal length to be 35mm and the aspect
ratio to be 1, and then optimize for the equivalent distance
between Ik and O.

To this end, we first consider the following property of
vanishing point: the line V ′O should be parallel with all 3D
intersection lines IkEk. Thus, we perform an orthographical
projection of the inner view using a new optical axis V ′O.
This leads to a new image Π′′, as illustrated in Fig. 2b. The
line segment OIk will also be projected onto Π′′ as a line
segment OI ′′k , and four intersection lines IkEk will become
four points on Π′′. Determining the distance between O and
Ik is equivalent to determining the distance between I ′′k and
V ′ on the new image plane Π′′.

Unfortunately, one can not fully determine the distance
between I ′′k and V ′, but only the ratio between V ′I ′′1 and
V ′I ′′k , k = 2, 3, 4, even if we have assumed the focal length
and the aspect ratio. This is because this camera-to-subject
distance is also correlated with the actual size of the box.
Intuitively, a box that is close and small may look identical
in the image as another box that is far but big. Thus, we
will manually set the distance between V ′ and I ′′1 to be 1
meter. It is important to note that, although we have manually
set the focal length, the aspect ratio, and the camera-to-
subject distance, these value of these parameters will not
affect the plane rectification results. Moreover, they also have
no influence on downstream tasks such as image inpainting.

With the position of I ′′1 , we then determine the positions
of I ′′k , k = 2, 3, 4, relative to the position of I ′′1 . We use the
following box prior: four planes of the box are either perpen-
dicular or parallel to each other. Thus, on the orthographic
image plane Π′′, the quadrilateral I ′′1 I

′′
2 I
′′
3 I
′′
4 should be a

rectangle.
Now we use the 2D coordinates defined on the plane Π′′

and centered at the vanishing point V ′. Denote the coor-
dinates of I ′′k on Π′′ by (xk, yk), the slope of I ′′1 I

′′
2 by u,

and the slope of I ′′2 I
′′
3 by v. Also denote the slope of V I ′′k

by wk, k = 1, 2, 3, 4, as illustrated in Fig. 2b. We have the
following equation system:

yk = wkxk; k = 1, 2, 3, 4 (I ′′k lies on the ray V I ′′k .)
y1 − y2 = u(x1 − x2) (definition.)
y2 − y3 = v(x2 − x3) (definition.)
y3 − y4 = u(x3 − x4) (I ′′1 I

′′
2 is parallel to I ′′3 I

′′
4 .)

y4 − y1 = v(x4 − x1) (I ′′2 I
′′
3 is parallel to I ′′4 I

′′
1 .)

x21 + y21 = 1 (camera assumption.)
uv = −1 (I ′′1 I

′′
2 is perpendicular to I ′′2 I

′′
3)

This equation system allows us to solve for u and v unam-
biguously. In fact, there exists a closed-form solution to the
values of u and v, which is independent of (xk, yk). After
determining u and v, we can further compute the positions
of I ′′k and thus the 3D positions of Ik, k = 1, 2, 3, 4.

During inference, we first compute the orthographic pro-
jection Π′′ based on the detected vanishing point and the
focal length. Next, by fixing the position of I ′′1 , we solve for
the other I ′′k , k = 2, 3, 4 on the orthographic image. Finally,
we project the solution back to the 3D space and determine
the 3D positions and surface normal vectors for individual
planes.

D. Box Program Induction for Outer Views

In this section, we present the box program induction for
outer views of boxes. The whole process is almost identical
to the inner view case, except that for an outer view, we
only need to consider two planes (e.g., two side planes of a
building), with the other planes being either non-visible or
foreshortened severely. The full search process consists of
four steps. First, we use pre-trained neural networks to detect
the 2D wireframe line segments (but no vanishing points)
from the image. We also filter out wireframe segments that
are too short in length. Next, we generate a set of candidate
plane segmentation maps by partitioning the image based
on the detected wireframe segments. Then, for each seg-
mented plane, we seek the program that best describes the
regularity on each plane. Finally, we rank all candidate plane
segmentations by the fitness score (defined in the main text).

Step 1: Visual cue detection. Following the box prior, an
outer view of a box contains only two planes. Therefore,
there will be only one intersection line between these two
planes (e.g., two walls of a building). We use L-CNN [45]
to extract wireframes in the image. Next, we filter out wire-
frame segments whose length is smaller than a threshold δ1.
The remaining wireframe segments are denoted by the set

WF . Note that unlike the inner view case, we do not use
vanishing point detection for outer views.
Step 2: Plane segmentation. Next, we then extend every
wireframe segment to a line. Each line will partition the
input image into two parts, which we treat as the candidate
plane segmentation of the image.
Step 3: Plane rectification and regularity inference.
Since we only have two planes, we cannot use the plane
segmentation to fully reconstruct the positions and surface
normal vectors of different planes. We run the Perspective
Plane Program Induction (P3I) algorithm [20] on each plane
to jointly infer the surface normal of each plane and its regu-
larity structure.
Step 4: Box program ranking. Identical to the inner view
case, we sum up the fitness score for two planes in each
candidate segmentation as the overall program fitness. We
use this score to rank all candidate segmentations, and pick
the program with the highest fitness to describe the entire
image.

E. Implementation Details
Table 1 specifies the domain-specific language (DSL) we

use in box program.
When filtering wireframes by length, we set δ1 = 0.1×

min(w, h), where w, h are the width and height of the input
image, respectively. Radius used to filter wireframes toward
the detected vanishing point is δ2 = 0.01 × min(w, h). In
the plane rectification step, we rectify the plane region to
a 200 × 200 image, on which we infer the regularity. We
assume that objects repeat at least 3 times on each plane.

F. Additional Results

F.1. Qualitative results.

We supplement more results on box program induction
(Fig. 6). Our model can be applied to less constrained images
by allowing the user to specify the regular region. It also
works for images where not all planes of a box exhibit regular
patterns. Fig. 6 (i) shows example results. In (a), we run BPI
on a user-specified region (the orange bounding box). BPI
outputs a reasonable program even though the left plane is
curved. We also show that our model can be applied to a
broader class of images than buildings, such as the bamboo
forest in (b), and the scene with irregular planes in (c).

F.2. Plane Segmentation

Because BPI develops a 3D understanding of the scene
in the process of inferring the box program under perspec-
tive effects, an immediate application is single-image plane
segmentation. Note that BPI performs this task by jointly
inferring the perspective effects and the pattern regularity, in
contrast to supervised learning approaches that train models

with direct supervision, such as [22]. The core intuition is
that the correct plane segmentation leads to the program that
best describes each segmented plane in terms of repeated
visual elements.
Baselines. We compare our method with two baselines:
Huang et al. [16] and PlaneRCNN [22]. Huang et al. [16]
first uses VLFeat [34] to detect vanishing points and line
segments. It then generates a soft partition of the image into
multiple parts by the support lines. PlaneRCNN is a learning-
based method for plane segmentation. It uses a Mask-RCNN-
like pipeline [13] and is trained on ScanNet [6].
Metrics. The output of each model is a set of masks indi-
cating the segmented planes. We compare these with the
ground-truth masks by computing the best match between
two sets of masks, where the matching metric is the inter-
section over union (IoU). We then report the average IoU of
all predicted masks. For corridor images, we exclude pixels
in the far plane region during evaluation. Because we wish
to use the plane segmentation to aid in image manipulation
tasks such as image inpainting, we evaluate all methods on
both original images (CrdO, BldO) and corrupted images
(CrdC, BldC).
Results. Fig. 3 and Table 2 show that BPI consistently out-
performs the baselines on both corridor and building images.
The baselines fail to detect planes when they contain com-
plex structures and patterns. We also provide more qualita-
tive results for plane segmentation in Fig. 7.

F.3. Image Inpainting

The inferred box programs support 3D-aware and
regularity-preserving image manipulation, because they pro-
vide information on both what the perspective effects are and
how the visual element repeats. To test BPI’s performance
on such tasks, we generate a dataset of corrupted images
by randomly masking out regions of images from our two
datasets.
Metrics. We use four metrics: pixel-level L1 distance, peak
signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [36], and a learned perceptual metric LPIPS [43].
Following standard practice [27, 2], we compute PSNR and
SSIM on image luma, and compute L1 distance and LPIPS
directly on RGB values.
Baselines. We compare our model against both learning-
based GatedConv [42] and three non-learning-based algo-
rithms: PatchMatch [4], Image Melding [8], and Huang et
al. [16]. All three non-learning algorithms are patch-based.
Image Melding allows additional geometric and photometric
transformations on patches. Huang et al. [16] first segments
the image into different planes and augments a standard
PatchMatch procedure with the plane rectification results.
Results. The results are summarized in Table 3 and Fig. 4.
Here we run linear mixed models between each pair of meth-
ods and, for each metric, we mark in bold all methods that

Program−→CameraProgram; WorldProgram;
CameraProgram−→SetCamera(pos=Vec3, point to=Vec3);

WorldProgram−→PlaneProgram; | PlaneProgram; World Program;
PlaneProgram−→SetPlane(pos=Vec3, normal=Vec3) For1Stmt;

For1Stmt−→For (i in range(Integer, Integer)){ DrawStmt; | For2Stmt }
For2Stmt−→For (j in range(Integer, Integer)){ DrawStmt }

DrawStmt−→Draw (x=Expr, y=Expr)
Expr−→Real× i+ Real× j | Real× i

Table 1: The domain-specific language (DSL) of box programs. Language tokens For, If, Integer, Real, and arithmetic/logical
operators follow the Python convention. Vec3 denotes 3D real vectors.

Input Huang’14 PlaneRCNN BPI (Ours) Ground Truth Input Huang’14 PlaneRCNN BPI (Ours) Ground Truth

Figure 3: Visualization of the plane segmentation by different methods.

Method CrdO CrdC BldO BldC

Huang et al. [16] 0.30 0.30 0.73 0.69
PlaneRCNN 0.52 0.52 0.63 0.63
BPI (Ours) 0.84 0.84 0.86 0.86

Table 2: Plane segmentation results in IoU between detected and
groundtruth planes. BPI outperforms both baselines on both original
(CrdO, BldO) and corrupted images (CrdC, BldC).

are indistinguishable with the best one. All p-values are in
the supplementary material. Our method outperforms base-
lines on corridor images and achieves comparable results
on building images with Huang et al. [16]. As discussed in
Sec. F.2, Huang et al. [16] relies on straight lines on the plane
to segment and rectify the image, so it works well on planes
with a plethora of such features. Huang et al. [16] tends to
fail on images without dense straight lines on the plane (rows
3-4 of Fig. 4). On corridor images, beyond producing high-
fidelity inpainting results, our regularity-aware PatchMatch
process preserves the structure of the scene, such as the light
on the ceiling in row 1 of Fig. 4.

We also provide more qualitative results for image in-
painting in Fig. 8 and image extrapolation in Fig. 9.

F.4. Time complexity.

For the corridor dataset, statistically, each image contains
1,506 wireframe combinations on average. 46 programs are
evaluated on each plane. Note that BPI reduces the search
space significantly based on the box prior, so that the search
can be done efficiently (23× faster than without the box
prior).

We also show the runtime of different algorithms on
the task of plane segmentation (Table 4) and image in-
painting (Table 5). The Image Melding [8] and Huang et
al. [16] baselines are tested on a single machine with an
Intel i7-6500U@2.5GHz CPU and 8GB RAM. All other
baselines are tested on a single machine with an Intel E5-
2650@2.20GHz CPU, a GeForce GTX 1080 GPU, and 8GB
RAM.

F.5. Failure Case

Fig. 5 shows three main failure cases of our model. First,
our model might misdetect vanishing points and wireframe
segments, as illustrated in (a), where the model missed the
wireframe between the floor and the right plane (detected
wireframes shown as red lines). A second type of failure
can occur when the image has a solid color plane. Illus-
trated in (b), our model segments the pure white part of the
floor as part of the left/right planes. Finally, the inference
might fail due to irregular planes, as shown in (c), where the
buildings on the left do not form a rectangular plane. These
issues could be mitigated with light user interaction, such as
specifying wireframes.

References
[1] Michael Ashikhmin. Synthesizing Natural Textures. In I3D,

2001. 1
[2] Johannes Ballé, Valero Laparra, and Eero Simoncelli. End-to-

end Optimized Image Compression. In ICLR, 2017. 4
[3] Coloma Ballester, Marcelo Bertalmio, Vicent Caselles,

Guillermo Sapiro, and Joan Verdera. Filling-in by Joint In-
terpolation of Vector Fields and Gray Levels. IEEE TIP,
10(8):1200–1211, 2001. 1

Corridors Buildings

Method L1 Mean ↓ PSNR ↑ SSIM ↑ LPIPS ↓ L1 Mean ↓ PSNR ↑ SSIM ↑ LPIPS ↓

PatchMatch 53.12 31.55 0.9872 0.0215 34.88 32.99 0.9896 0.0072
Image Melding 58.50 30.54 0.9880 0.0174 49.10 30.42 0.9890 0.0134
Huang et al. [16] 51.88 31.41 0.9869 0.0177 26.10 34.87 0.9917 0.0049
GatedConv 44.98 32.32 0.9883 0.0153 55.31 29.54 0.9866 0.0112
BPI (Ours) 38.45 34.21 0.9892 0.0170 26.43 34.86 0.9913 0.0054

Table 3: We compare BPI-guided PatchMatch with both patch-based and learning-based methods on the task of image inpainting. ↑ indicates
that the higher the number, the better. Bold indicates models that are indistinguishable with the best one under that metric with a linear
mixed model. See text for details.

Corrupted Images PatchMatch Image Melding Huang et al. [2014] GatedConv BPI (Ours) Ground Truth

Figure 4: Qualitative results on the task of image inpainting. Compared with the baselines, our model can better preserve the regular
structures even if they are sparse or have strong perspective effects.

[4] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan
Goldman. PatchMatch: A Randomized Correspondence Al-
gorithm for Structural Image Editing. ACM TOG, 28(3):24,
2009. 1, 4, 7

[5] Tony Beltramelli. Pix2Code: Generating Code from a Graph-
ical User Interface Screenshot. In EICS, 2018. 1

[6] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. ScanNet: Richly-
Annotated 3D Reconstructions of Indoor Scenes. In CVPR,
2017. 4

[7] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B. Gold-
man, and Pradeep Sen. Image melding: combining inconsis-
tent images using patch-based synthesis. ACM TOG, 31:82:1–
82:10, 2012. 1

[8] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Gold-

man, and Pradeep Sen. Image Melding: Combining Incon-
sistent Images using Patch-based Synthesis. In SIGGRAPH,
2012. 4, 5, 7

[9] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexan-
der M Rush. Image-to-Markup Generation with Coarse-to-
Fine Attention. In ICML, 2017. 1

[10] Alexei A. Efros and William T. Freeman. Image Quilting for
Texture Synthesis and Transfer. In SIGGRAPH, 2001. 1

[11] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and
Josh Tenenbaum. Learning to Infer Graphics Programs from
Hand-Drawn Images. In NeurIPS, 2018. 1

[12] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Es-
lami, and Oriol Vinyals. Synthesizing Programs for Images
Using Reinforced Adversarial Learning. In ICML, 2018. 1

Huang et al. [16] PlaneRCNN [22] BPI (Ours)

Corridor Boxes 1.91s 0.14s 43.50s
Building Boxes 6.83s 0.76s 171.20s

Table 4: Runtime of different methods on the task of plane segmentation.

PatchMatch [4] Image Melding [8] Huang et al. [16] Gated Conv [42] BPI (Ours)

Corridor Boxes 61.6s 1275.1s 18.9s 1.9s 20.1s
Building Boxes 122.1s 808.3s 64.4s 4.9s 41.4s

Table 5: Runtime of different methods on the task of image inpainting.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 4

[14] Kaiming He and Jian Sun. Statistics of Patch Offsets for
Image Completion. In ECCV, 2012. 1

[15] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering
the Spatial Layout of Cluttered Rooms. In CVPR, 2009. 2

[16] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Jo-
hannes Kopf. Image Completion using Planar Structure Guid-
ance. ACM TOG, 33:129:1–129:10, 2014. 1, 4, 5, 6, 7

[17] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Globally and Locally Consistent Image Completion. ACM
TOG, 36(4):107, 2017. 1

[18] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. GRASS: Generative Recursive
Autoencoders for Shape Structures. ACM TOG, 36(4):52,
2017. 1

[19] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaud-
huri, Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen,
Daniel Cohen-Or, and Hao Zhang. GRAINS: Generative
Recursive Autoencoders for INdoor Scenes. ACM TOG,
38(2):12:1–12:16, 2019. 1

[20] Yikai Li, Jiayuan Mao, Xiuming Zhang, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Perspective Plane
Program Induction from a Single Image. In CVPR, 2020. 1, 4

[21] David Liebowitz, Antonio Criminisi, and Andrew Zisserman.
Creating Architectural Models from Images. CGF, 18(3):39–
50, 1999. 2

[22] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and
Jan Kautz. PlaneRCNN: 3D Plane Detection and Reconstruc-
tion From a Single Image. In CVPR, 2019. 4, 7

[23] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image Inpainting for
Irregular Holes Using Partial Convolutions. In ECCV, 2018.
1

[24] Yunchao Liu, Zheng Wu, Daniel Ritchie, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Learning to Describe
Scenes with Programs. In ICLR, 2019. 1

[25] Jiayuan Mao, Xiuming Zhang, Yikai Li, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Program-Guided Image
Manipulators. In ICCV, 2019. 1

[26] John FJ Mellor, Eunbyung Park, Yaroslav Ganin, Igor
Babuschkin, Tejas Kulkarni, Dan Rosenbaum, Andy Bal-
lard, Theophane Weber, Oriol Vinyals, and SM Eslami. Un-
supervised Doodling and Painting with Improved SPIRAL.
arXiv:1910.01007, 2019. 1

[27] Philipp Merkle, Aljoscha Smolic, Karsten Muller, and
Thomas Wiegand. Multi-view Video Plus Depth Representa-
tion and Coding. In ICIP, 2007. 4

[28] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. EdgeConnect: Generative Image Inpaint-
ing with Adversarial Edge Learning. arXiv:1901.00212, 2019.
1

[29] Chengjie Niu, Jun Li, and Kai Xu. Im2Struct: Recovering 3d
Shape Structure from a Single Rgb Image. In CVPR, 2018. 1

[30] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-
GAN: Learning a Generative Model from a Single Natural
Image. In ICCV, 2019. 1

[31] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kaloger-
akis, and Subhransu Maji. CSGNet: Neural Shape Parser for
Constructive Solid Geometry. In CVPR, 2018. 1

[32] Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani.
InGAN: Capturing and Remapping the “DNA” of a Natural
Image. In ICCV, 2019. 1

[33] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis,
William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu.
Learning to Infer and Execute 3D Shape Programs. In ICLR,
2019. 1

[34] A. Vedaldi and B. Fulkerson. VLFeat: An Open and Portable
Library of Computer Vision Algorithms. http://www.
vlfeat.org/, 2008. 4

[35] Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir,
Ligang Liu, Zhiquan Cheng, and Yueshan Xiong. Symmetry
Hierarchy of Man-Made Objects. CGF, 30(2), 2011. 1

[36] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image Quality Assessment: From Error Visibility
to Structural Similarity. IEEE TIP, 13(4):600–612, 2004. 4

[37] Wei Xiong, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes,
and Jiebo Luo. Foreground-Aware Image Inpainting. In
CVPR, 2019. 1

[38] Zhaoyi Yan, Xiaoming Li, Mu Li, Wangmeng Zuo, and
Shiguang Shan. Shift-Net: Image Inpainting Via Deep Feature
Rearrangement. In ECCV, 2018. 1

http://www.vlfeat.org/
http://www.vlfeat.org/

(a) (b) (c)

Figure 5: Failure cases. Our model may fail when neural networks misdetect visual cues (a). When image contains a solid color plane, our
model may segment the pure white part to other planes (b). The inference might fail on irregular scenes, but could be mitigated with user
interaction (c).

SetPlane_l(pos=[-1.1, -1.39, 0.23],

normal=[-1.00, -0.01, -0.00])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_t(pos=[1.04, -1.37, 0.23],

normal=[0.01, -0.95, -0.31])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_r(pos=[1.00, 1.55, 1.19],

normal=[1.00, 0.01, 0.00])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_b(pos=[-1.15, 1.52, 1.19],

normal=[-0.01, 0.95, 0.31])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_l(pos=[-1.4, -1.48, 1.68],

normal=[0.40, 0.06, 0.92])

for i in range(0, 6)

for j in range(0, 9)

Draw(, x = -28 * i

+ 6 * j,

y = 52 * j)

SetPlane_r(pos=[-1.5, -1.49, 1.10],

normal=[-0.07, 0.14, 0.99])

for i in range(0, 5)

for j in range(0, 5)

Draw(, x = 55 * i,

y = 52 * j)

SetPlane_l(pos=[-1.0, -2.77, 0.10],

normal=[-1.00, -0.01, 0.03])

for i in range(0, 10)

Draw(, x = 20 * i)

SetPlane_t(pos=[1.03, -2.75, 0.03],

normal=[0.01, -0.99, -0.10])

for i in range(0, 3)

Draw(, x = 65 * i)

SetPlane_r(pos=[1.01, 0.42, 0.36],

normal=[1.00, 0.01, -0.03])

for i in range(0, 9)

Draw(, x = 22 * i)

SetPlane_b(pos=[-1.02, 0.40, 0.42],

normal=[-0.01, 0.99, 0.10])

for i in range(0, 6)

Draw(, x = 30 * i)

(b) (c)(a)

Figure 6: More image examples and the corresponding programs. We use cyan lines to visualize the lattice structure on each plane.

[39] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang,
and Hao Li. High-Resolution Image Inpainting Using Multi-
Scale Neural Patch Synthesis. In CVPR, 2017. 1

[40] Halley Young, Osbert Bastani, and Mayur Naik. Learning
Neurosymbolic Generative Models via Program Synthesis. In
ICML, 2019. 1

[41] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative Image Inpainting with Contex-

tual Attention. In CVPR, 2018. 1
[42] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas S Huang. Free-Form Image Inpainting with Gated
Convolution. In ICCV, 2019. 1, 4, 7

[43] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman,
and Oliver Wang. The Unreasonable Effectiveness of Deep
Networks As a Perceptual Metric. In CVPR, 2018. 4

[44] Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma.

Input Huang’14 PlaneRCNN BPI (Ours) Ground Truth

Figure 7: Visualization of the plane segmentation by different methods.

NeurVPS: Neural Vanishing Point Scanning via Conic Con-
volution. In NeurIPS, 2019. 2

[45] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end Wireframe
Parsing. In ICCV, 2019. 2, 3

[46] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel
Cohen-Or, and Hui Huang. Non-Stationary Texture Synthesis
by Adversarial Expansion. ACM TOG, 37(4):49, 2018. 1

Corrupted Images PatchMatch Image Melding Huang et al. [2014] GatedConv BPI (Ours) Ground Truth

Figure 8: Qualitative results on the task of image inpainting.

InGANInput Image Content-Aware Scale Kaspar et al. [2015] Huang et al. [2014] BPI (Ours)

Figure 9: Qualitative results on the task of image extrapolation.

