Multi-Plane Program Induction with 3D Box Priors

Yikai Lil»%*
William T. Freeman'3
IMIT CSAIL

Jiayuan Mao'*
Joshua B. Tenenbaum?
2Shanghai Jiao Tong University

Xiuming Zhang!
Noah Snavely?
3Google Research

Jiajun Wu*
4Stanford University

http://bpi.csail.mit.edu

Abstract

We consider two important aspects in understanding and
editing images: modeling regular, program-like texture or
patterns in 2D planes, and 3D posing of these planes in the
scene. Unlike prior work on image-based program synthe-
sis, which assumes the image contains a single visible 2D
plane, we present Box Program Induction (BPI), which in-
fers a program-like scene representation that simultaneously
models repeated structure on multiple 2D planes, the 3D po-
sition and orientation of the planes, and camera parameters,
all from a single image. Our model assumes a box prior,
i.e., that the image captures either an inner view or an outer
view of a box in 3D. It uses neural networks to infer visual
cues such as vanishing points or wireframe lines to guide a
search-based algorithm to find the program that best explains
the image. Such a holistic, structured scene representation
enables 3D-aware interactive image editing operations such
as inpainting missing pixels, changing camera parameters,
and extrapolate the image contents.

1. Introduction

We aim to build autonomous algorithms that can infer two
important structures for compositional scene understanding
and editing from a single image: the regular, program-like
texture or patterns in 2D planes and the 3D posing of these
planes in the scene. As a motivating example, when observ-
ing a single image of a corridor like the one in Fig. 1, we
humans can effortlessly infer the camera pose, partition the
image into five planes—including left and right walls, floor,
ceiling, and a far plane—and recognize the repeated pat-
tern on each of these planes. Such a holistic and structural
representation allows us to flexibly edit the image, for in-
stance by inpainting missing regions, moving the camera,
and extrapolating the corridor to make it infinite.

A range of computer vision algorithms have utilized such
a holistic scene representation to guide image manipulation
tasks. Several recent ones fit into a program-guided image
manipulation framework [2, 6, 7]. These methods infer a

* indicates equal contribution.

| SetCamera (0, +z)

setPlane(pos_1, normal 1) |

| SetPlane(pos_2, normal_2) |
| for i in range(0, 4):]
oeaw [

x = 54 * i)

Representation (Box Program)
v
T T
o

View Synthesis

Input Image
|

!

=<l

Yo

e

Inpainting (zoomed-in)

Extrapolation

Figure 1: We present Box Program Induction (BPI), which infers
a program-like scene representation that simultaneously models
repeated structure on multiple 2D planes, 3D positions and orienta-
tions of the planes, relative to the camera, all from a single image.
The inferred program can guide perspective- and regularity-aware
image manipulation tasks: image inpainting, extrapolation, and
view synthesis.

program-like image representation that captures camera pa-
rameters and scene structures, enabling image editing opera-
tions guided by such programs so that the scene structure is
preserved during editing. However, due to the combinatorial
complexity of possible compositions of elementary compo-
nents based on the program grammar, these methods usually
only work for images in highly specific domains with a fixed
set of primitives such as hand-drawn figures of simple 2D
geometric shapes [2] and synthesized tabletop scenes [6], or
natural images with of a single visible plane, such as ground
tiles and patterned cloth [7, 5].

To address these issues and scale up program-guided im-
age manipulation, we present a new framework, namely, Box
Program Induction (BPI, for short), that jointly segments the
image into multiple planes and infers the repeated structure
on each plane. Our model assumes a box prior, leveraging
the observation that box-like structures widely exist in im-
ages. Many indoor and outdoor scenes fall into this category:
walking in a corridor or room corresponds to observing a
box from the inside, and taking a picture of a building corre-
sponds to seeing a box from the outside.

http://bpi.csail.mit.edu

| for i in range(0, 5)

(b) Box Program

Figure 2: Example box programs inferred by BPI. They jointly
model camera parameters, the 3D positions and orientations of
multiple planes, as well as the regularity structure on planes.

To enable efficient inference of box programs, we also
propose to utilize mid-level cues, such as vanishing points
or wireframe lines, as well as high-level visual cues such
as subject segmentations, to implicitly constrain the search
space of candidate programs. Given the input image, BPI
first infers these visual cues with pre-trained data-driven
models. Next, it enumerates all candidate programs that
satisfy the implicit constraints imposed by these inferred
visual features. Finally, it ranks all candidate programs using
low-level visual features such as pixel reconstruction.

In summary, we present BPI, a framework for inducing
box programs from images by exploiting learned visual cues.
Our experiments show that BPI can efficiently and accurately
infer the structure and camera parameters for both indoor and
outdoor scenes. The inference procedure is robust to errors
and noise inherent to visual cue prediction: BPI automati-
cally selects the best candidate wireframe lines and refines
the vanishing points if they are not accurate. BPI also enables
users to make 3D-aware interactive editing to images, such
as inpainting missing pixels, extrapolating image content in
specific directions, and changing camera parameters.

2. Box Program Induction

Our proposed framework, Box Program Induction (BPI),
takes an image as input and infers a box program that best
describes the image, guided by visual cues.

2.1. Domain-Specific Language

We use a domain-specific language (DSL), namely the
box programs, to describe multiple planes in the scene and
the regularity structure on individual planes. We assume
these planes are faces of a 3D box. Shown in Fig. 1, a box
program consists of two parts: camera parameters and pro-
grams for individual planes. A plane program first sets the
plane’s surface normal, then specifies a sub-program defin-
ing the regular 2D pattern on the plane. These patterns utilize
the primitive Draw command, which places patterns at spec-
ified 2D positions. Draw commands appear in For-loop
statements that characterize the regularity of each plane. We
include the full DSL in the appendix.

2.2. Box Program Fitness

Given an input image, our goal is to segment the image
into different planes, estimate their surface normals relative
to the camera, and infer the regular patterns. We treat this

Step 1 Step 2 Step 3 Step 4

' mre o
i SF
T T S~
u 7“\

HE

] \ej__/

. N - Ve
(b) Vanishing Point -
and Wireframe Detection T 7’ —
oo | E R
e ke
(a) Input Image L E S \/
‘ E -,

AN e e N
e 7N
(c) Filtered Wireframes (d) Plane Segmentation (e) Rectified Planes (f) Box Programs
and Inferred Regularity
Figure 3: Our Box Program Induction finds the best-fit program
that describes the input image (a). It first detects the vanishing
point and wireframe segments (b), followed by a filtering step (c).
It then constructs a set of candidate plane segmentation maps (d).
Given each plane segmentation, it rectifies each plane and infers
its regularity structure (e). We rank all candidate box programs by
their fitness (f); the starred candidate is the best.

problem as seeking a program P that best fits the input image
I. We first define the fitness of a program P by measuring
how well P reconstructs I. Recall that a box program P
is composed of multiple plane programs, each of which
defines the regular pattern on a plane, its position, and ori-
entation in 3D. Based on camera parameters, we can rectify
each plane, resulting in images without perspective effects
{J1,J2, -, Ji}, where k is the number of planes in P.

For each plane i, we compute its fitness score by com-
paring its rectified image J; and the corresponding plane
program block @;. The score is defined similarly as in the
Perspective Plane Program Induction framework [5]. Specif-
ically, executing (); produces a set of 2D coordinates C;
that can be interpreted as the centers of each visual ele-
ment. Since (Q; contains a nested loop of up to two lev-
els, we denote the loop variable for each For loop as a
and b. Thus, each 2D coordinate in C; can be written as a
function of a and b, c¢(a,b) € R?. The fitness score F is
defined as, F = — Zmb [||Ji[0(a, b)] — Ji[c(a +1, b)]“% +
| Jile(a, b)] — Jile(a, b+ 1)][|2], where ||-||2 is the £2 norm
and J;[c(a, b)] denotes the patch centered at c¢(a,).

2.3. 3D Box Priors and the Role of Visual Cues

A naive way to find the best-fit program P is to enumer-
ate all possible plane segmentations of the input image [
and rank all candidates by the fitness score. However, the
complexity of this naive method scales exponentially in the
number of planes. Instead, we consider 1) the box prior,
which constrains the plane segmentation of the image, and
2) visual cues that help to guide the search. Specifically, we
impose the following box prior:

* For an inner view of a box, e.g., a corridor as in Fig. 2a,
our box program models four planes: two side walls, the
floor, and the ceiling. For images with a far plane, we will

peer
qﬂ"
! ",(r

(a) Corrupted Image~~ (b) Box Program (c) RectifiedPlane (d) ShiftMap () Inpainted Planc ~ (f) Inpainted Image

Figure 4: An illustration of the proposed program-guided Patch-
Match. Given the corrupted image, we first detect its box program
(b) and rectify each plane (c). We use the regular structure (d) on
the plane to guide the PatchMatch to inpaint the corrupted plane
(e). The color in (d) visualizes the relative position of each pixel to
the center of its associated lattice cell.

segment the far plane but do not use programs to model it,
as most far planes do not contain a regular structure.

 For an outer view of a box, e.g., a building as in Fig. 2b,
our box program models the two side walls as two planes.
We do not model the roof as, in most images, the roof is
either nonvisible or very small in size.

Below, we show how to use visual cues to guide the search
for box programs. We focus on the inner view case, and
include details for the outer view case in the supplemental
material. The full search process is illustrated in Fig. 3, and
consists of four steps.

Given an input image (Fig. 3a), we apply NeurVPS [10]
to detect the vanishing point and L-CNN [1 1] to extract wire-
frames in the image. We use the most confident prediction
of NeurVPS as the vanishing point and filter out invalid
wireframe segments that are too short or do not intersect
with the vanishing point. Next, we generate a set of candi-
date plane segmentations based on possible combinations of
the detected wireframe segments. Then, for each segmented
plane, we seek the program that best describes the plane
structure based on the fitness score. Finally, we sum up the
fitness score for all planes in a candidate segmentation as
the overall program fitness. We use this score to rank all
candidate segmentations, and choose the program with the
highest fitness to describe the entire image.

2.4. Program-Guided Image Manipulation

The inferred box program enables 3D-aware interactive
image manipulation. Lying at the core of these applications
is a program-guided PatchMatch algorithm.

Our program-guided PatchMatch augments the Patch-
Match algorithm [1] by enforcing the regularity on each
plane. Consider the task of inpainting missing pixels on the
wall of a building in Fig. 4. Taking a corrupted image as
input (Fig. 4a), we infer the box program from the undam-
aged pixels (Fig. 4b). The inferred box program explains
the plane segmentation and the regularity pattern on each
plane. For each plane that contains missing pixels, we can
first rectify the corrupted plane as shown in Fig. 4c. Since
the plane program on this plane will partition the image with
a lattice, we construct a “shift map”, illustrated as Fig. 4d,
which represents the relative position of each pixel to the

center of the lattice cell that this pixel lies in, normalized to
[—0.5,0.5].

In PatchMatch, the similarity sim(p, ¢) between pixel p
and pixel ¢ is computed as a pixel-level similarity simpixel
between two patches centered at p and ¢, with a constant
patch size dpm. We add another term to this similarity
function:sim(p,q) £ siMmpixel + SiMreg = SiMpixel —
Areg |[wraparound(smap(p] — smaplq])||3, where Ayeq is @
hyperparameter that controls the weight of the regularity
enforcement. abs is the absolute value function. The shift-
map term measures whether two pixels p and ¢ correspond
to the same location on two (possibly different) repeating
elements on the plane. We “wrap around” shift map distance
by wraparound(x) = max(1 — x,x), as the top-left corner
and the bottom-right corner of a cell also matches. Thus, the
PatchMatch algorithm will choose the pixel based on both
pixel similarity and regularity similarity to fill in the missing
pixels (Fig. 4e).

3. Experiments

For evaluation, we introduce two datasets, and then apply

box programs on these datasets. Here we focus on two tasks
that showcase the advantage of perspective- and regularity-
aware image manipulation based on programs: image extrap-
olation and view synthesis. We include additional evaluation
of box programs on plane segmentation and image inpainting
in the appendix.
Dataset. We collect two datasets from web image search
engines for our experiments, a 44-image Corridor Boxes
dataset and a 42-image Building Boxes dataset. These corre-
spond to the inner view and the outer view of boxes, respec-
tively. For both datasets, we manually annotate the plane
segmentations by specifying edges of the boxes. For corridor
images, we also create a mask for the far plane. For building
images, we supplement the subject segmentation (i.e., the
building of interest) to the dataset annotation.

3.1. Image Extrapolation

The inferred box programs support 3D-aware and
regularity-preserving image manipulation, such as extrapo-
lating box structures. Here, on the Building Boxes dataset,
we show that our model can make the building taller or
wider. The input to the model is a foreground mask of the
building and the target region to be filled with the extrapo-
lated building. We compare our method with four baselines:
Content-Aware Scaling in Adobe Photoshop, Kaspar et al.
[4], Huang et al. [3] and InGAN [&]. For content-aware scal-
ing, we first select the foreground mask and then scale it
so that it fills the target region. For both Kaspar et al. [4]
and InGAN, we extract the bounding box of the foreground
building and use it as the input. The model generates a new
image that is 1.5x larger. For Huang et al. [3], we cast the
extrapolation problem as inpainting the target region.

ol «
ceruntla
208 oonlllocnt!
::::‘?ﬂ”'.
e

el e
000 get!

;f‘:d"'

10€ean!

Input Image

et v‘"f,' ST

Content-Aware Scale Kaspar et al. [2015]

e W

WL eeeeeeee

InGAN

Huang et al. [2014] BPI (Ours)

Figure 5: The “extrapolated” buildings. Content-Aware Scale, Kaspar et al. [4], and InGAN fail to preserve the building structure while
extrapolating the image: they either generate irregular patterns or change the shape of the planes. Huang et al. [3] fails to preserve the regular

structure when inpainting large areas.

Input

Sk -
e A
"N N N\

View Synthesis Results by BPI (Ours)

View Synthesis Results by BPI (Ours)
Figure 6: View synthesis from a single image of a corridor. Com-

pared with the learning-based method SynSin, our model better
preserves the regular patterns on the walls and also has remarkably
fewer artifacts.

As shown in Fig. 5, Content-Aware Scaling is unaware of
perspective effects and fails to preserve the lattice structure
in the image. It also cannot generate new visual elements
such as windows. Both Kaspar et al. [4] and InGAN do not
preserve existing pixels when extrapolating the image. Kas-
par et al. [4], as a texture synthesis method, also ignores the
two-plane structure when generating the new image. While
InGAN is able to capture the visual elements, it does not fol-
low the lattice pattern during synthesis. Huang et al. [3] can
inpaint small local areas as in Fig. ??, but does not follow
the regular structure when inpainting a large area. In contrast,
BPI preserves both the plane structure of the building and
the lattice pattern on each side.

Quantitatively, we randomly select 12 images, and ask 15
people to rank the outputs of different methods. We collected
12 x 15 = 180 responses. The preference for the models are:
Ours(61%), Content-Aware Scaling(16%), Kaspar et al. [4]
(2%), InGAN(16%), and Huang et al. [3] (5%).

3.2. View Synthesis

As our inferred box programs captures a holistic 3D scene

representation, we can synthesize novel views of the scene
from a single image. We compare different models on the
Corridor Boxes dataset. We consider three types of camera
movement: 1) “step into the corridor”, 2) “step back in the
corridor”, and 3) “step back in the corridor, pan leftward,
and tilt upward”. All trajectories generate 5 frames. Detailed
parameters are included in the supplemental material. Note
that in both trajectories that involve “stepping back™, the
algorithm must synthesize pixels unseen in the original im-
age. For our BPI, we run our program-guided PatchMatch to
extrapolate the planes and synthesize pixels that are outside
the input view frustum.
Results. We compare images generated by our BPI and by
SynSin [9] in Fig. 6. The arrow on the input shows camera
movement. As our method can generate a corridor of an
arbitrary length, we see significantly fewer artifacts when
the camera movement is large, compared with SynSin. Even
in the top example where the camera movement is small, the
pixels synthesized by SynSin that are outside the original
view frustum already fail to preserve the regular structure.

For a quantitative comparison, we randomly select 20
images, generate synchronized videos of the results produced
by our method and by SynSin on all three camera trajectories,
and ask 10 people to rank the outputs. We collected 20 x
3 x 10 = 600 responses. For the three different trajectories,
100%, 94%, and 99.5% of the responses prefer our result to
that by SynSin, respectively.

4. Conclusion

We have presented Box Program Induction (BPI), a frame-
work for inferring program-like representations that model
the regular texture and patterns in 2D planes and the 3D
posing of these planes, all from a single image. Our model
assumes a box prior, which constrains the plane segmenta-
tion of the image, and uses visual cues to guide the inference.
The inferred box program enables 3D-aware interactive im-
age editing. Currently, our algorithm assumes that the full
image can be partitioned into planes with regular structures.
Future research may consider integrating models that can
handle the presence of irregular image regions.

Acknowledgements

This work is supported by the Center for Brains, Minds

and

Machines (NSF STC award CCF-1231216), NSF

#1447476, ONR MURI N00014-16-1-2007, and IBM Re-
search. Work was done while Jiajun Wu was a visiting re-
searcher at Google Research.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan
Goldman. PatchMatch: A Randomized Correspondence Al-
gorithm for Structural Image Editing. ACM TOG, 28(3):24,
2009. 3

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and
Josh Tenenbaum. Learning to Infer Graphics Programs from
Hand-Drawn Images. In NeurIPS, 2018. 1

Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Jo-
hannes Kopf. Image Completion using Planar Structure Guid-
ance. ACM TOG, 33:129:1-129:10, 2014. 3, 4

Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark
Pauly, and Johannes Kopf. Self Tuning Texture Optimization.
CGF, 34(2):349-359, 2015. 3,4

Yikai Li, Jiayuan Mao, Xiuming Zhang, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Perspective Plane
Program Induction from a Single Image. In CVPR, 2020. 1, 2
Yunchao Liu, Zheng Wu, Daniel Ritchie, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Learning to Describe
Scenes with Programs. In ICLR, 2019. 1

Jiayuan Mao, Xiuming Zhang, Yikai Li, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Program-Guided Image
Manipulators. In ICCV, 2019. 1

Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani.
InGAN: Capturing and Remapping the “DNA” of a Natural
Image. In ICCV, 2019. 3

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. SynSin: End-to-end View Synthesis from a Single
Image. In CVPR, 2020. 4

Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma.
NeurVPS: Neural Vanishing Point Scanning via Conic Con-
volution. In NeurIPS, 2019. 3

Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end Wireframe
Parsing. In ICCV, 2019. 3

